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1 Money and interest rates

What is the opportunity cost of holding money? Economists give two answers to this ques-
tion. First, money is a way to save, and the alternative to saving is to consume right away.
Thus, the holding cost of money reflects patience and the changing value of consumption
over time (summarized in a stochastic discount factor). Second, there are many ways to store
wealth, so another alternative to holding money is to buy an asset – perhaps a Treasury Bill
or a book entry in a deposit account – which may pay interest. If so, then this interest rate is
another opportunity cost of holding money.

The usual inference is that the two answers coincide: interest rates must equal the inverse
of the expected discount factor (including inflation, in case of nominal assets). If there is a
representative consumer who consumes c, pays price p, and discounts the future by β < 1,
this reasoning yields the famous Euler equation:
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(1)

Although its interpretation differs across schools of thought (more on which in Section 5
below), this equation is at the heart of modern macroeconomics. This becomes a problem
when empirical applications identify it with the monetary policy instrument, or a similar
short-term rate. For instance, models estimated with U.S. data generally use the Federal
Funds Rate [49], 3-month T-bill rate [47], or commercial paper rate [50, 38] as the empirical
counterpart of it. Yet all of these rates price highly liquid assets that have as much in common
with money as they have with long-term saving. Consider what the literature has identified
as making for a liquid, “money-like”, asset:

(a) Serving as a medium of exchange [ancient];
(b) Serving as collateral for a loan when money is needed [53];
(c) The ability to sell it on a secondary market when money is needed [22];
(d) The expectation that it turns into money soon, before that money is needed [25].

Any medium of exchange is money in its most direct sense (a). But a collateralizable or
saleable asset is indirect money, because people who give up money to buy such an asset
know that they have a way to get their money back if they need it badly enough (b,c). This
channel is weaker if the collateral is subject to a large haircut or if selling the asset at a good
price takes time, but it is always present, and surely so for U.S. Treasuries that can be pledged
or sold within hours. Finally, if one needs money in two months, then a bond that matures in
one month is as good as money (d). Indeed, accounting jargon makes all assets that mature
in less than a year “cash equivalents”. So which asset could in practice be perfectly safe,
short-term, yet perfectly illiquid?
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No, Equation (1) cannot possibly price the monetary policy instrument, which in most
countries is an interest rate on debt as short-term and liquid as one can imagine. And there
is a better way. Suppose we add to our models a bond which does not generally serve as
a medium of exchange (hence it is distinct from “money”, which does), but which is still
“liquid” in ways (b)-(d).1 Let us denote the nominal interest rate on this bond by iPt (“policy
rate”). In contrast, consider a hypothetical illiquid bond whose payout must be used for
buying consumption in the future; its nominal interest rate, iFt , satisfies Equation (1) by
construction. Since that equation is the Fisher equation in the long run, Geromichalos and
Herrenbrueck [23] proposed to call iFt the Fisher interest rate.

As people can always hold money (which pays no interest), the policy rate iPt cannot be
less than zero. And since the liquid bond cannot be less valuable than the illiquid one, iPt
cannot exceed iFt :

iPt ∈ [0, iFt ]

Every fact about monetary policy makes more sense once we identify short-term monetary
policy with iPt , rather than iFt , as the rest of this paper will demonstrate.

2 An informal model

In Section 4, we present a formal intertemporal model of money and liquid assets, but its
essential insights can be explained informally. First, abstract from shocks, risk, and second-
order terms, and suppose: (i) people expect consumption to grow at rate g and prices to grow
at rate π; (ii) the marginal utility of consumption is proportional to c−θ, so that θ is the inverse
elasticity of intertemporal substitution; (iii) people discount the future at rate ρ ≡ 1/β − 1;
and (iv) the yield on the liquid bond (iP ) is a known function G of the opportunity cost of
holding money (the Fisher rate iF ) and the relative supply of liquid bonds to money (B/M ),
increasing in both arguments.2 Thus, the two rates iF and iP must satisfy:

iP = G
(
iF ,

B

M

)
(2)

iF = ρ+ θg + π (3)

where the latter is simply the linearized right-hand side of the Euler equation (1).

1Empirically, U.S. T-Bills are quite liquid but still not perfect substitutes to U.S. money [35], and of course
they can never be perfect substitutes to non-U.S. money. Safe assets do tend to be more liquid than risky ones, but
this is an endogenous outcome and not a matter of definition, and the association is not perfect [36, 45, 27, 24, 26].

2A good number of formal models indeed yield something like this function G in reduced form; among them,
[21, 54, 46, 5, 33, 23], and more. If money is not neutral (for example, in the short run), or if there are additional
illiquid nominal assets in the economy, then G will depend separately on B and 1/M .
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In Section 3, we investigate Equation (3) empirically, and show that it fails to match the
data for any values of θ and ρ. But the argument against treating iF as the policy instru-
ment goes beyond macrofinancial data, and touches the foundations of what we know about
monetary policy. If iF is the monetary policy instrument, how can a desired rate be imple-
mented by a monetary authority? According to the equation, in one of three ways: through
expected inflation, through expected consumption growth, or through shocks to ρ conve-
niently timed to coincide with monetary policy announcements. (The first of these is the
path taken by much of monetary theory; the second, the path taken by New Keynesian mod-
els where prices are sticky, current consumption is endogenous, thus expected consumption
growth ‘clears’ the equation.) In reality, however, measures of expected inflation and growth
are either uncorrelated with policy rates or negatively correlated, at least in countries and
times where these rates stay in single digits, and an explanation based on endogenous time
preference does not amount to explaining anything.

But Equations (2)-(3) also present an opportunity to use the return on the liquid bond, iP ,
as an alternative model of the policy rate.3 Why does the policy rate correlate so weakly
with g and π? Because the pass-through from iP to iF can be positive, zero, or even negative.
How is a desired policy rate implemented? Through open-market operation that adjust the
money supply in the background: a lower M/B ratio causes higher interest rates, moving
up the “money demand curve” from the undergraduate textbook. Assuming G is invertible,
we can write:

B

M
= H

(
iF , iP

)
(4)

iF = ρ+ θg + π

Now, iF and iP are logically independent instruments. They may still be correlated in the
data depending on the nature of shocks (across big fluctuations in inflation the inequality
iP ≤ iF will assert itself) or the rules governing policy (e.g., a Taylor rule). But the tight link
between interest rates and inflation, implied by Equation (1), is broken. We call the spread
between iF and iP the aggregate liquidity premium:

ℓ ≡ iF − iP

Crucially, since iP is an independent policy instrument and iF is a macroeconomic equilib-
rium object, the spread ℓ acts like a residual. Mathematically, ℓ is a version of the conve-
nience yield from the macrofinance literature [14, 44], but the role it plays in this economy
is quite different. First, it is not exogenous, nor is it structural: the pass-through from iP

3To our knowledge, the first microfounded model of money to do this is [3]; since then, the list has grown
[5, 4, 18, 11, 23]. Others model monetary policy as implemented via open-market operations of a (partially or
fully) liquid bond, but do not explicitly identify its yield with the main policy instrument [54, 32, 46].
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to ℓ, from the policy rate to the aggregate liquidity premium, depends on the policy regime
(see Section 3.2). Second, as the spread between the theoretically least liquid bond and the
theoretically most liquid bond, it is of an order of magnitude larger than most estimates of
convenience yields or liquidity premia, which are typically identified by comparing two as-
sets that are fairly similar in the big picture (for example, on-the-run with off-the-run bonds
[52], or T-notes with TIPS [6]).

To take this reasoning further, suppose we are pricing an asset X that can be liquidated
whenever money is needed, in the same way as the liquid bond, but only with probability
η ∈ [0, 1]. (Or, almost equivalently, one can use it as collateral but subject to a haircut 1− η.)
Suppose this asset also depreciates at rate δ (which, again almost equivalently, could stand
in for default risk or higher-order risk premia). Then, the linearized nominal rate of return
on asset X will be:

r = δ + (1− η)iF + ηiP

↔ = δ + iF − ηℓ

↔ = δ + iP + (1− η)ℓ (5)

This equation is a no-arbitrage condition among assets with varying real properties (δ, η). It
illustrates how financial liquidity imbues an asset with indirect moneyness, lowers its return
(relative to the fundamental) by an asset-specific liquidity premium ηℓ, and integrates its
return with the monetary policy rate iP . The direct pass-through from iP to r is less than
one for all but the most liquid assets, but only if we hold all else (inflation expectations, risk
premia, asset tradability) fixed, which may not be the case in real-world settings.

3 A look at the data

Trying to match up the right-hand side of Equation (1) with short-term interest rates results
in a fit so famously poor that it has spawned entire branches of econometrics [28, 30]. Here,
we make no claim to advance estimation in this way; however, we do want to provide a
simple back-of-the envelope analysis of the data, since we think much can be learned from
the violations of the Euler and Fisher equations. As it turns out, these are not mere noise, but
highly systematic in ways that match with what else we know about how monetary policy
is conducted, implemented, and intended.

We begin with quarterly postwar U.S. data on consumption growth, inflation, and inter-
est rates.4 To simplify matters, we assume that the elasticity of intertemporal substitution

4We take the 3-month T-bill secondary market rate as representative of a safe, short-term, highly liquid asset,
but other choices are reasonable: federal funds, commercial paper, Libor, etc. Aside from a short window around
1980, these rates have never differed by more than a percentage point.
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1/θ equals 1, corresponding to logarithmic utility of consumption.5 Thus, the right-hand
side variable in the Euler equation is simply the growth rate of nominal consumption, ptct.
We do not divide by the size of the population; most models of long-run growth (whether
neoclassical or OLG) imply a positive effect from population growth to interest rates, usually
with pass-through of either 1 or θ, but with logarithmic utility we have θ = 1 anyways.

Postulating a simple log-linear trend for time preference, ρt ≡ − log(βt) = ρ0 + ρ1t, and
picking (ρ0, ρ1) to provide the best fit between ex-post consumption growth and the T-bill
rate, we obtain the following result, illustrated in Figure 1:

ρ̂ 1948 ≈ −3% linearly increasing to ρ̂ 2022 ≈ −1% (annually)

Best fit it may be, but it flies in the face of received wisdom in many ways:

(a) Implied time preference is negative throughout (the risk-free rate puzzle);
(b) Implied time preference has increased over time (what about secular stagnation?);
(c) The fit is atrocious: the correlation is only 0.22 in levels, and −0.14 in first differences

(0.35 and −0.14, respectively, if the sample ends in 2019).

Of course, these problems are well known [28, 30, 12, 41]. But they are usually under-
stood as problems with “the Euler equation”: short-term interest rates do not fit well with
ex-post consumption growth, so it is the equation that must be misspecified, and solutions
are to be found via a distinction between long-run and short-run risk (the Epstein-Zin litera-
ture), the particular interests of wealthy investors [40], or various other models of stochastic
discount factors [41]. However, in the words of Canzoneri et al. [12], “the problem is fun-
damental: alternative specifications of preferences can eliminate the excessive volatility, but
they yield an Euler equation rate that is strongly negatively correlated with the money mar-
ket rate.” The source of the problem may not be the equation as such, but the question of
which interest rate it is estimated with: in the words of Rocheteau et al. [46], “to test the
Fisher Equation one should not compare [inflation and the nominal rate on liquid bonds],
but [inflation and] the nominal rate on an illiquid asset. That may be hard to implement
empirically since most assets have some degree of liquidity.”

But we can sidestep this problem by estimating the right-hand side of the Fisher equation
directly.6

5We also considered an infinite elasticity (θ = 0) as a robustness check; in this case, only inflation is predicted
to matter in the Fisher equation, not growth. All our results are robust to this alternative specification.

6Similar efforts have been made. [12] and [17] estimate the right-hand side of various real-asset Euler equa-
tions, and both suggest that the spread of the implied rate to the money market rate may be due to the “liquidity
services” of the latter.
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Figure 1: Ex-post realized nominal consumption growth versus short-term interest rates (3-
month T-bills, secondary market rate), from 1948-2022. Consumption growth is calculated as:
[(pt+1ct+1)/(ptct)]

4 − 1 (quarterly, annualized) and (pt+4ct+4)/(ptct) − 1 (year-over-year), measured
in percentage points. Best-fit estimates (throughout this paper) are computed after log points trans-
formation x 7→ log(1 + x).
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3.1 Simple estimate of iF

Abstracting away from issues of risk and Jensen’s inequality, we use a loglinear representa-
tion of Equation (1) to define the ex-post counterpart of the Fisher rate (and multiply by 4 to
convert to annual frequency):

xt+1 ≡ − log(β) + 4
[
log(pt+1ct+1)− log(ctpt)

]
and define the Fisher interest rate as a forecast of xt+1: log(1 + iFt ) ≡ Etxt+1.

We compute three versions of the forecast: first, via a regression of xt on one-quarter lags
of itself, of the 3-month T-bill rate, and of the Moody’s AAA corporate bonds rate; second,
via a four-quarter moving average of the first estimate (where the estimates at time t − 3,
t − 2, t − 1, and t are averaged so as to provide a smoother forecast of xt+1); third, via a
regression of xt+1 on one-year lags of itself, of the 3-month T-bill rate, and of the Moody’s
AAA corporate bonds rate. This method yields the smoothest forecast of the three, but one
that perhaps does not react enough to short-term movements in the variables.

These three measures of iFt , along with ex-post xt+1 and the 3-month T-bill rate as a
measure of iPt , are shown in Figure 2. Clearly, while the forecasts differ at short horizons,
they agree on the following big-picture facts: (1) iFt does not match up with iPt , neither in
terms of slope nor intercept; (2) the iFt -series exceeds the iPt -series almost everywhere, which
is consistent with the theoretical bounds iPt ∈ [0, iFt ]. The reader will notice that this is not a
sophisticated forecast. But since the raw ex-post outcome xt is also shown, the reader may
agree that a more sophisticated forecast is unlikely to change the story.

3-month T-bill rate

ex-post nominal consumption growth + 3

forecast (all lags)

forecast (all lags, MA4)

forecast (4th lag only)

1950 1960 1970 1980 1990 2000 2010 2020
0

5

10

15

20

%

Figure 2: Policy rate iPt versus the ex-post Fisher rate xt+1 and various estimates of the ex-ante Fisher
rate iFt . ρ = 3% is assumed.
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One crucial parameter is not well identified: the time discount rate β, or equivalently
the rate of time preference ρ ≡ 1/β − 1. Standard practice in macroeconomics has been to
calibrate time preference to observed interest rates, but now an interest rate must also provide
information about the liquidity of that particular asset. For now, we maintain ρ = 3% as
a working hypothesis; it is the minimal ρ that is consistent with the constraint iP ≤ iF

being satisfied throughout the dataset (save for a brief moment around 1980). Experimental
and field studies that directly measure time preferences tend to find much larger values of
ρ ≥ 10% [2, 7]; if these numbers are correct, and representative of the population, then the
implied Fisher rate – the opportunity cost of storing wealth as money – is much larger yet
than shown in Figure 2.

3.2 Long-run relationship between iF and iP

As explained earlier, the correlation between first differences of xt and iPt is actually negative.
But xt is measured ex-post – what about its forecastable component, iFt ? Its correlation with
iPt , in first differences, is still nearly zero. The long run is another matter, however: the Fisher
equation (3) is a steady-state relationship and, as such, is only supposed to hold in the long
run. In order to investigate this possibility, we split the dataset into 4-year bins and average
iPt and iFt (now identified as xt, without any attempt at a short-term forecast) in each bin.
Figure 3 shows the result.

Figure 3: Four eras of U.S. monetary policy: iPt versus iFt from 1948-2022, averaged in 4-year bins
(last bin is 2020-22). ρ = 3% is assumed. Trend lines are drawn with slope 0.75 (left) and 2 (right).

The classical hypothesis implies a slope of 1 and an intercept of 0 in these figures. With
only 19 data points, a a slope coefficient of 1 cannot be rejected, but an intercept of 0 is
clearly ruled out – liquid bonds carry a liquidity premium. But we are not trying to estimate
the Fisher equation, we are looking for insight into systematic violations of it. In particular,
monetary policy before 1980 was not conducted by setting interest rates; instead, a variety
of money supply targeting schemes were employed (from the Gold Standard through the
Monetarist Experiment), and interest rates were either a secondary target or left to adjust
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freely. Indeed, Summers [51] estimated a slope coefficient of inflation of 0.75, using data
going back to the 1920s. This estimate is consistent with Equation (2) of the informal model:
expected inflation (via iF ) and tightness of credit (via B/M ) were varying autonomously and
iP was attenuated according to function G.

Something changed, however, just as Summers’ study was published: in his first term
as Chair of the Federal Reserve, Paul Volcker raised policy interest rates (iP ↑) via restrictive
open-market operations (B/M ↑ in Equation 2), which brought down inflation and, in the
short term, even growth (iF ↓). Such a regime shift is also consistent with Equation (2), but it
would not have been possible according to the classical Fisher equation (3).

In subsequent years, the U.S. Federal Reserve’s policy has been consistent with a Tay-
lor rule whereby it adjusts the policy rate strongly in response to inflation movements and
modestly in response to GDP movements. We see the signature of this policy regime in the
right panel of Figure 3: iF reflects the sum of inflation and consumption growth, and in-
deed the 1980-2020 long-term pass-through of iF to iP was almost exactly 2. The two data
points representing 2008-2015, encompassing the zero-lower-bound era, do not stand out,
since nominal GDP growth was almost as stable as interest rates in that time.

Finally, the 2022 “triple shock” (pandemic-era fiscal expansion running into a supply-
chain crunch and the Russia-Ukraine war) can be clearly seen in the most recent data point
on the bottom right of the graph, even though this data point averages the years 2020-2022:
a sudden run-up in inflation that had not yet been matched by higher interest rates as of
2022. But who doubts that the Fed’s aggressive tightening cycle in 2023 will result in a
counterclockwise turn on the graph, like Volcker’s did a generation ago?

3.3 International comparisons

The postwar U.S. data can only take us so far in evaluating a truly long-term relationship.
75 years, when averaged into 4-year bins, only give us 19 data points, and 4-year windows
might be too brief anyway. Therefore, in this section, we will test the Fisher equation against
the Macrohistory database [34], a panel of annual data from 18 countries, stretching from 1870
to 2019. Following Jordà et al. [34], we identify the “long run” with a decade, and take ge-
ometric averages of nominal GDP growth (since consumption is not available for enough
of the dataset) and short-term interest rates. (Unlike the arithmetic average, the geometric
average represents the annualized cumulative rate of return from reinvesting wealth in short-
term bills over a period of time, which is an important difference since this database spans
some periods of extreme macroeconomic volatility.) After excluding the Germany-1920s pair
(which includes the 1923 hyperinflation), we are left with 256 data points representing 18
countries over 15 decades. We graph the results in Figure 4, against Fisher equation bench-
marks with time preference intercepts of 1%, 3%, and 5%.
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Figure 4: 256 country-decade averages of short-term interest rates and nominal GDP growth.
“FisherEqnX” represents nominal GDP growth plus X% time preference, X ∈ {1, 3, 5}. The best-
fit slope is 0.19, but the fit is poor (R2 = 0.12).

The figure also includes a line of best fit from a linear regression, with a slope coefficient
of 0.19 (robust standard error 0.05). A Hausman test prefers the fixed-effects estimate of
a slope of 0.17 (0.04), but that is beside the point: for a Fisher equation relationship that is
supposed to be structurally stable and theoretically supreme in the long run, the fit is terrible.

But just as we saw in the previous section, the deviations from the postulated Fisher re-
lationship turn out to be more instructive than any statistical trend. Four data points in the
bottom right of the graph stand out as having exceptionally high inflation coexist with very
low interest rates. It turns out that all four are in the 1940s, raising our suspicion that the low
interest rates might have been the outcome of war-related financial repression rather than
free capital markets. On the other hand, our theory postulates an inequality iP ≤ iF , which
is violated in several data points on the top left of the graph. But it turns out that most of
those come from the 1920s, when high interest rates and low growth were the outcome of
attempts to return currencies to the gold standard at the pre-World-War-1 parity, i.e., requiring
massive deflation, a policy now considered one of the causes of the Great Depression [19].

Consequently, to give the Fisher equation its best shot at matching the macrohistory data,
we repeat the analysis for a reduced dataset that excludes all of the 1920s and 1940s and show
the results in Figure 5. Now, the line of best fit has a slope coefficient of 0.40 (0.04), with the
Hausman test still preferring the fixed-effects estimate of a slope of 0.38 (0.03). The fit is much
better than in Figure 4, but still very far from supporting a structural relationship with slope
coefficient of one and intercept in the low single digits, as the Fisher equation postulates.
Instead, Figure 5 fits well with our theoretical model: with notably rare exceptions on both
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Figure 5: 239 country-decade averages of short-term interest rates and nominal GDP growth.
“FisherEqnX” represents nominal GDP growth plus X% time preference, X ∈ {1, 3, 5}. The best-
fit slope is 0.40, but the fit is still not great (R2 = 0.30).

sides, interest rates fall in-between the zero lower bound and the Fisher equation upper
bound ρ+ θg+ π, and a wide range of long-term combinations of interest rates, Fisher rates,
and residual liquidity premia are observed in the data.

In analyzing the dataset from many different angles, we only found a single one that
supports a nearly-Fisherian relationship: the Great Moderation, which we define as the three
decades from 1980 to 2009. All country-decade pairs in this subsample averaged less than
15% inflation over a decade, except Portugal in the 1980s (which we therefore exclude). We
show the results from our Great Moderation subsample in Figure 6; the line of best fit now
has a slope of 1.14 (0.06) with a confidence interval that only just exceeds 1.

So, is this finally evidence in favor of the Fisher equation? Even here, the full story is
more interesting. The slope from a fixed-effects estimate (which the Hausman test again
favors) is 1.24 (0.07), now statistically significantly larger than one. What is going on? Just
like we saw in the long-term U.S. data in the previous section, the era 1980-2009 is precisely
when central banks started to actively set interest rates in order to achieve an inflation target,
typically following the Taylor principle of reacting to inflation changes with a greater-than-
one change in interest rates. The fact that the 1980-2009 era exhibited a historically strong
relationship between nominal GDP growth and interest rates is precisely evidence that this
relationship is not structural, but varies with the policy regime and the kinds of medium-run
shocks affecting an economy.
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Figure 6: 53 country-decade averages of short-term interest rates and nominal GDP growth during
the Great Moderation / Taylor Rule era. “FisherEqnX” represents nominal GDP growth plus X%
time preference, X ∈ {1, 3, 5}. The best-fit slope is 1.14, with a good fit (R2 = 0.79).

4 A formal model of monetary policy and asset pricing

In this section, we present a formal microfounded model which nests the informal model
from Section 2 as a special case. Readers more interested in how our theory relates to (and
differs from) canonical macroeconomic frameworks, and how it makes sense of monetary
and asset pricing puzzles, can safely skip ahead to Sections 5 and 6.

4.1 Environment

We adapt the “Liquidity-Augmented Model” from Geromichalos and Herrenbrueck [23],
with the following innovations. First, for simplicity we ignore capital and investment, and
instead consider a Lucas tree as the generic asset which we seek to price in relation to money
and bonds. Second, bonds are “short-term” in the sense that they mature (and turn into
money) before all spending opportunities have materialized [25].

The economy consists of a unit measure of households and a consolidated government.
Each household has two members: a worker and a shopper, who make decisions jointly
to maximize the household’s utility. All households are anonymous, therefore they cannot
make long-term promises and trade must be quid-pro-quo.

Time t = 0, 1, . . . is discrete and runs forever. Each period is divided into four sub-
periods: an asset market (AM), a production market (PM) further subdivided into an “early”
and a “late” stage, and a centralized market (CM). There are three assets: fiat money (supply
Mt) and one-period nominal discount bonds (Bt) issued by the government, and a Lucas
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tree in exogenous supply Xt. Each period, a fraction δX of trees is destroyed; new trees are
created exogenously and given equally to all households. Changes in the stock of money
and bonds can be implemented in one of two ways: either via open-market operations in the
AM, or via lump-sum transfers in the CM. This environment is illustrated in Figure 7.

t – 1        t                                                                           t     t + 1

        AM            early PM          late PM                             CM

           

    β                          Bonds mature                                                                     β

All households work, 

produce output goods

Government makes money 

transfer and issues bonds

Fraction δ of trees is destroyed;

remaining trees produce dividend

Households trade and consume 

output goods, and buy assets

Households produce, trade, and 

consume general good

Early shoppers 

buy output goods 

with money
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Figure 7: Timing of events in the formal model.

At the very beginning of a period, all shocks are revealed. A randomly selected fraction
λt(1 − σt) of shoppers learn that they will enter the “early” PM where they can buy goods
from workers; a fraction λtσt learns that they will enter the “late” PM; the other shoppers
(1 − λt) are “inactive” and will not participate in the PM in that period. This information
induces differing liquidity needs among the shoppers, motivating trade in the AM. In the
equilibrium we are interested in, early shoppers will seek to hold money (and sell bonds and
trees, which are illiquid to them), late shoppers will prefer to buy bonds (since they mature
and become money in time to be spent on consumption, hence bonds are liquid to them),
and inactive shoppers will seek to earn a return on their idle money by spending it on bonds
and trees. The government can also trade money and bonds in the AM, and we interpret the
market price of bonds in the AM as the main policy instrument.

Next, the economy proceeds to the PM stage. Each worker produces yt units of consump-
tion goods at zero cost, and workers can choose freely whether to sell these in the “early”
or “late” PM. Due to anonymity, credit is not feasible so shoppers must pay for the goods
with a suitable medium of exchange. We assume that money is the only asset that can fulfill
this role – an assumption here, but see [23] for a discussion of the microfoundations behind
it – however, since bonds mature in time to take advantage of “late” consumption opportu-
nities, shoppers faced with these opportunities will treat bonds effectively as money within
that period. Thus, we can interpret the parameter σ, the fraction of PM trade that is “late”,
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as the short-term-ness of the bonds: if σ → 1, the bonds are truly cash equivalents.
The final subperiod, the CM, is where consumption takes place, and consumption can

come from two sources: produced goods yt or the fruit of Lucas trees, dt per tree. (Thus, the
aggregate supply of consumption goods satisfies ct = yt+dtXt, which we treat as exogenous
for the purposes of this paper.) In the CM, all households can trade consumption goods
among themselves, as well as all assets.

In summary, the three assets differ in their “liquidity” as follows. Money is the most
liquid: it can be traded for any other commodity, in any market. Bonds are the next most
liquid: a fraction ηB of them can be traded in the AM (or used as collateral for a monetary
loan, in which case 1− ηB is the haircut), and because they mature partway through the PM,
a fraction σ of agents will effectively treat them as money there. Trees are the least liquid:
only a fraction ηX of each tree can be traded (or used as collateral) in the AM, and while the
math is general, we think of the case ηX < ηB ≤ 1 as best representing reality.

Finally, there exists a “general” consumption good, g ∈ R, which households can pro-
duce, consume, and trade during the CM (negative values mean production and positive
ones mean consumption). This good is in zero aggregate supply; its only function in the
model is to induce linear preferences for an individual household, collapse the portfolio
problem into something tractable, and create a representative household. Households dis-
count the future at rate β < 1 and have the following per-period utility function:

Ut(ct, gt) = u(ct) + gt,

where u is a twice continuously differentiable function that satisfies u′ > 0 and u′′ < 0.

4.2 Equilibrium

We start with the household’s problem in the CM. Consider a household with portfolio
(mt, bt, xt, yt) of money, bonds, the Lucas tree, and output goods. The household chooses
its consumption (ct and gt), as well as the asset portfolio (mt+1, bt+1, xt+1) to be carried into
the next period. The prices of general goods (pGt ), output goods (pt), bonds (pBt ), and Lucas
trees (pXt ; all in terms of money) are taken as given, and the transfer of money from the gov-
ernment (Tt) is also taken as given. Let V CM and V AM denote the value functions in the CM
and AM subperiods, respectively. We can describe the household’s choice as follows:

V CM (mt, bt, xt, yt) = max
ct,gt,mt+1,bt+1,xt+1

{
u(ct) + gt + βE{V AM (mt+1, bt+1, xt+1)}

}
s.t. ptct + pXt xt+1 + pGt gt +mt+1 + pBt bt+1

= ptyt + pt(1− δX)dtxt + pXt [(1− δX)xt + x̃t] +mt + bt + Tt,
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where x̃t represents newly created Lucas trees that are endowed to the household.
Next, in the PM, active shoppers decide how much output good (yt) to purchase, and

workers decide which market to sell the output good. Define the prices of the the output
good in the early and late goods markets as pEt and pLt , respectively. Then, it must be that
pEt = pLt .7 Now, define q = pEt /pt = pLt /pt. Let Λt+1 ∈ {0, 1} denote whether an individual
shopper is an active shopper (Λt = 1) or inactive shopper (Λt = 0). Let St ∈ {0, 1} denote
whether an active shopper is a late shopper (St = 1) or an early shopper (St = 0). Finally, let
V PM denote the value function in the PM. We can describe the household’s choice as follows:

V PM (mt, bt, xt,Λt, St) =max
yt

{
V CM (mt + Stbt − ptqtyt, (1− St)bt, xt, yt)

}
,

s.t. yt ≤ Λt
mt + Stbt

ptqt
.

Finally, consider the AM. After the shocks Λt and St have been realized, early shoppers
will want to sell assets other than money, while late shoppers will seek to sell Lucas trees
but buy bonds, since their consumption opportunities arrive after bonds mature. Inactive
shoppers will want to buy bonds and Lucas trees. Let (χt, ξt) denote the amounts of bonds
and Lucas trees sold by an active shopper with St = 0. Let (ζBt , ξt) denote the amount of
money spent on buying bonds and the amount of Lucas trees sold by an active shopper with
St = 1. Finally, let (ζBt , ζXt ) denote the amounts of money spent on bonds and Lucas trees
bought by an inactive shopper. Households take the prices of bonds and capital as given;
we denote them by sBt and sXt in terms of money. Hence, we can describe the households’
choices as follows:

V AM
Λt=0(mt, bt, xt) = max

ζBt ,ζXt

{
V CM (mt − ζBt − ζXt , bt + ζBt /sBt , xt + ζXt /sXt )

}
s.t. mt − ζBt − ζXt ≥ 0;

V AM
Λt=1,St=0(mt, bt, xt) =max

χt,ξt

{
V PM (mt + sBt χt + sXt ξt, bt − χt, xt − ξt, 1, 0)

}
s.t. χt ≤ ηBt bt, and ξt ≤ ηXt xt;

V AM
Λt=1,St=1(mt, bt, xt) =max

χt,ξt

{
V PM (mt − ζBt + sXt ξt, bt + ζBt /sBt , xt − ξt, 1, 1)

}
s.t. mt + sXt ξt ≥ ζBt , and ξt ≤ ηXt xt.

We leave the detailed solutions to the above problems to the Appendix and highlight
only the results here. The Euler equations for money, bonds, and Lucas trees are:

7Proof : suppose that pEt < pLt . First, note that pLt ≤ pt, since the output good is also traded in the following
CM. Next, if pEt < pLt , no workers will sell their output good in the early market. However, early shoppers are
willing to pay up to pEt = pt to buy the output good, which means that pEt < pLt cannot be part of a competitive
equilibrium. Similarly, pEt > pLt cannot be part of a competitive equilibrium either.
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u′(ct)

pt
= βE

{
u′(ct+1)

pt+1

[
λt+1σt+1

sBt+1qt+1
+

λt+1(1− σt+1)

qt+1
+

1− λt+1

sBt+1

]}
(6)

u′(ct)p
B
t

pt
= βE

{
u′(ct+1)

pt+1

[
λt+1σt+1

qt+1
+ λt+1(1− σt+1)

(
1− ηBt+1 +

ηBt+1s
B
t+1

qt+1

)
+ 1− λt+1

]}

u′(ct)p
X
t

pt
= βE

{
(1− δX)(pt+1dt+1 + pXt+1)

u′(ct+1)

pt+1

. . .

[
1− λt+1η

X
t+1 +

λt+1η
X
t+1[(1− σt+1)s

B
t+1 + σt+1]

qt+1

]}
(7)

which share a common structure: the cost of obtaining the asset is matched on the right-
hand side by a ‘fundamental return’ multiplied by a liquidity premium term that accounts
for using the assets in a trade in the AM or PM.

But how does the monetary authority implement a particular policy rate? We define the
policy rate as the implied yield on liquid bonds in the AM (1 + iPt = 1/sBt ). Market clearing
in the AM then implies that:

1 + iPt =
1

sBt
=

λt(1− σt)

1− λt(1− σt)

[
ηBt Bt

Mt
+

ηXt (1− δX)[ptdt + pXt ]Xt

Mt

]
(8)

This is the short-term counterpart to Equation (2) of the informal model, defining the func-
tion G. Seen this way, the secondary market yield on liquid bonds depends on the demand
for money in that period, λt/[1−λt(1−σt)], on the supply of liquid bonds relative to money,
Bt/Mt, as well as the saleable market value of other liquid assets relative to the money sup-
ply. We can invert Equation (8) to obtain the bond quantity corresponding to a particular
level of the policy rate:

Bt =
1− λt(1− σt)

ηBt λt(1− σt)
(1 + iPt )Mt −

ηXt
ηBt

(1− δX)(ptdt + pXt )Xt (9)

In the short run, the Fisher rate does not appear directly in either formula, but expectations
of inflation and growth still affect these equations via the equilibrium price of trees and the
level of real balances.

Define the ex-post Fisher rate as:

1 + iFt+1 =
u′(ct)

βu′(ct+1)
· pt+1

pt

and impose a balanced growth path for consumption at rate g, assuming the elasticity of
u′(c) equals −θ, and a balanced growth path for the money supply and price level at rate π.
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Then, the long-run Fisher rate satisfies 1 + iF = (1 + g)θ(1 + π)/β. After linearizing (and
defining ρ = 1/β − 1), we obtain Equation (3) from the informal model.

On this balanced growth path, the rest of our equilibrium variables satisfy:

q(iF , iP ) =
(1 + iP )σλ+ (1− σ)λ

1 + iF − (1− λ)(1 + iP )

p(iF , iP ) =

[
1 + σ

1−σ (1 + iP )
]
M + λσ(1− ηB)B

q(iF , iP )y

pX(iF , iP ) =
(1− δX)[1 + ηX(iF − iP )/(1 + iP )]d

iF − ηX(iF − iP )/(1 + iP )
p(iF , iP ) (10)

where linearizing the latter equation yields Equation (5) from the informal model, thereby
demonstrating how the policy rate and the Fisher rate separately affect the pricing of a
generic asset X . Note that any direct dependence on the policy rate disappears when ηX = 0,
i.e., asset X is entirely illiquid.

And finally, we have the long-run version of Equation (8):

B

M
=

1− λ(1− σ)

ηBλ(1− σ)
(1 + iP )− (1− δX)[p(iF , iP )d+ pX(iF , iP )]ηXX

ηBM

which is the formal counterpart of Equation (4), defining the ‘money demand curve’ H.

5 Comparison with other frameworks

5.1 The New-Keynesian / Neo-Wicksellian framework

In the New Keynesian model, Equation (1) is called the “expectations-augmented IS curve”
and interpreted as follows. it is set by monetary policy while expectations of future con-
sumption and inflation are (to a first approximation) given; thus it is ct, consumption today,
that adjusts to make the equation true. This is the main way monetary policy affects the
economy: higher interest rates reduce output via consumption demand.

However, even apart from questions of empirical fit of the IS curve itself, the idea that
monetary policy can “set” it is problematic. In simple New Keynesian models, this is left as
a black box. In models that open the box, such as [13] where it is set via fiscal interventions
in households’ budgets, the fiscal implications run counter to the facts.

Empirical estimation of a New Keynesian DSGE model sometimes allows for a “conve-
nience yield” on Treasuries [14], observationally equivalent to the liquidity premium pos-
tulated by our model. However, this convenience yield is estimated as an independently
varying noise term; the pass-through from the monetary policy rate to the rate in the con-
sumer’s Euler equation is still 1 after the noise is averaged out. Here, by contrast, we argue
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that the monetary policy rate can be set independently of the Fisher rate (which is deter-
mined in general equilibrium), and that the liquidity premium is best understood as the
residual iF − iP .

5.2 Monetarism, old and new

In most of monetary theory, from money-in-the-utility-function beginnings [48] to the micro-
founded cutting edge [37], the main instrument of monetary policy is money growth which
then determines prices and inflation, and ultimately interest rates via the Fisher equation (3).
Inflation affects the economy through a real balance effect; generally, this hurts any kind
of economic activity where cash is used. As in the New Keynesian model, higher interest
rates therefore correlate with reduced output, but the mechanism is very different. Chang-
ing interest rates may be how monetary policy is communicated, but the true causal variable is
expected inflation. This approach is problematic since expected inflation does not vary much
over the business cycle in developed countries [29], and larger shifts over longer horizons
do not correspond well with movements in interest rates (see Section 3).

Certainly, monetary economists have known for a long time that some bonds are liq-
uid, and these have a lower yield because of a liquidity premium [21]. However, the full
implications of this fact have gone underappreciated even in monetary theory. Part of the
reason is that in some models (e.g., [53]), the bond liquidity premium appears as a constant
markdown µ̄ such that:

iPt = (1− µ̄)iFt

So even though iF and iP are now distinct rates, as may be accounted for in a calibration,
it is still the case that policy changes to iPt must correspond one-to-one to changes in iFt .
This does not help much. The risk-free rate puzzle is resolved (liquid bond rates are low
because of the liquidity premium), but other puzzles remain (e.g., the structural shifts in
the link between iPt and inflation). The solution lies in models where iPt also depends on
the quantity of liquid bonds relative to money, so it can be implemented via open-market
operations independently from the evolution of iFt . This is quite easy to accomplish within
New Monetarist microfoundations, as we demonstrate with our own model in Section 4.

5.3 The natural rate of interest

The Fisher rate iF and the “natural rate” are related concepts which share a mathemati-
cal expression (Equation 3) and reflect the same economic forces: time preference, expected
growth, and expected inflation. But there are important conceptual differences in the inter-
pretation of these rates and how we think of their representation in the data. First, the natural
rate arises in sticky-price models as the interest rate that would prevail if prices were flexible;
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here, prices are already flexible, and the reason observed rates differ from the Fisher rate is
due to the moneyness of bonds. Second, the Fisher rate is the theoretical upper bound on the
policy rate (and on all short-term safe rates), whereas the natural rate is supposed to be the
average of actual rates over time. Third, more than just being the average, the natural rate
is supposed to be an attractor of policy rates, at least in a determinate model (given ‘active’
policy, e.g. the Taylor principle in a New Keynesian model). Not so here: through altering
the money supply (relative to bonds and relative to demand), the monetary authority can
pick any iP ∈ [0, iF ], hence there is no theoretical reason to expect an attractor to exist.

5.4 Barnett’s user cost of money

Barnett [10] observed that many assets are valued for their liquidity services, and proposed
to account for them as follows: construct a broad monetary aggregate where assets other than
narrow money are weighted inverse to their user cost, which Barnett proposed to estimate as
the interest rate on a fairly illiquid benchmark asset – possibly adding a linear offset of 3%.
For an example, if the benchmark rate was 6%, and the yield on T-bills was 3%, then T-bills
should enter the monetary aggregate with a weight of (6%− 3%)/6% = 0.5.

Clearly, Barnett’s formula for the user cost of money is closely related to our concept of
the Fisher rate, and the formula for the weights corresponds to our concept of the liquid-
ity premium on a specific asset divided by the Fisher rate. However, despite resembling
this aspect of Barnett’s theory, our model does not support its construction of a monetary
aggregate.8 The deep reason is our concept of indirect liquidity: many assets can be easily
turned into money, but once this is done it is still money that is exchanged for goods and
services. Other assets have no role in the quantity equation even as they are priced for their
anticipated-but-indirect liquidity services.

6 Questions answered and puzzles resolved

A long list of questions and puzzles is resolved when we properly distinguish between the
yields on liquid and illiquid bonds: how monetary policy can set interest rates in the first
place, the lack of a Fisher effect in the short run, the post-2008 persistence of low inflation de-
spite low interest rates, the risk-free rate puzzle, the equity premium puzzle, the UIP puzzle,
and more. Each of these puzzles has stimulated its own theoretical and empirical literature,
most with plausible improvements on the standard model, and we make no claim that any
of these do not contribute to explaining the respective puzzle – or that our theory explains

8See Equation (A.5) in the Appendix: while the money supply relevant for PM trade can be expressed as a
weighted sum of money and other assets, the weights are mainly composed of exogenous variables and cannot
be expressed in terms of the assets’ rates of return.
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all of it. But there are vast disconnects between these literatures, as what explains one puz-
zle often fails find applications – or even empirical support – when applied to other areas
of macroeconomics. Azariadis [9] puts it better than anyone: “Attempts to explain [basic
asset pricing facts] involve narrowly specialized structural assumptions that would limit the
applicability of any model in other areas of macroeconomics.”

This is precisely the motivation of this section. We argue that a simple principle resolves,
or at least improves in the correct direction, a vast array of puzzles spanning macroeco-
nomics and finance: money is not a ‘special’ asset deserving to be studied in a “boutique
subfield” (as Wright [55] bemoans), but central to macrofinancial analysis. Without taking
substitution with money into account, all asset pricing theory is incomplete.

1. How exactly is the monetary authority able to set interest rates?

As in Macro 101: via open-market operations in secondary asset markets. This works
because the monetary authority controls the money stock (at the margin; the point is
unchanged if private agents can create some money but cannot outcompete the mone-
tary authority). Thus, they can achieve any iP ∈ [0, iF ].

2. The awkward coexistence of the Fisher effect and a short-run liquidity effect

The Fisher effect applies to iF and the liquidity effect applies to iP . Specifically:

Fisher effect: higher money supply ⇒ higher inflation ⇒ higher iF

Liquidity effect: higher money supply ⇒ bonds are scarce ⇒ lower iP

In the long run, the two rates may show comovement as the inequality iP ≤ iF asserts
itself, but there is no structural correlation, especially across regime shifts (see Figure 3).
And in the short run, any correlation is possible, depending on which shocks are hit-
ting the economy. There is no Neo-Fisherian puzzle of policy rates affecting inflation
causally, since policy rates do not obey the Fisher equation.

3. The “lowflation” puzzle

The coexistence of low interest rates and low but positive inflation is a puzzle in the
standard New Keynesian model, which predicts either accelerating inflation (in the
standard equilibrium) or deflation (in the liquidity trap equilibrium), unless the “natu-
ral” real interest rate has cratered (the secular stagnation hypothesis) [16]. Not so here:
since Equations (2)-(3) hold even in a monetary steady state, coexistence between a low
policy rate and a high Fisher rate is no problem (see also [1]).

4. Did the U.S. run the Friedman rule in 2009-2014 and 2020-21?

Certainly not. See Figure 2: the policy rate was zero in that time but the Fisher rate was
far from it. We cannot be sure about ρ, but even eliminating time preference altogether
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implies iF2014 ≈ 4% and iF2020 ≈ 3%. Our preferred value of ρ = 3% (which corresponds
to iF ≈ iP during their Volcker-era peaks) implies iF2014 ≈ 7% and iF2020 ≈ 6%; historical
lows, but still far from the Friedman rule.

5. The risk-free rate puzzle

Resolved almost by construction, since a liquidity premium reduces the yields on liq-
uid bonds below their fundamental levels.

6. The equity premium puzzle

Explained by Lagos [36]: even if equity is almost as liquid as bonds, a small difference
is enough to account for the equity premium. See also Equations (5) and (10).

7. The positive term premium

Explained by Geromichalos et al. [25]: short-term assets are inherently more liquid
because they turn into money when they mature. Long-term assets must be liquidated
instead, which can be subject to delays and/or transaction costs.

8. The prominence of a “liquidity factor” in empirical asset pricing

Observed by Liu [43], and explained by Equation (5).

9. The uncovered interest parity puzzle

Violations of UIP – interest rate changes that do not correspond to matching exchange
rate movements – can be explained by differential liquidity of the bonds involved [42,
39], and exchange-rate movements more broadly also support the liquidity story [20].

10. The forward guidance puzzle

Iterating Equation (1) forward, consumption today should be affected by all future
rates equally, without discounting of far-future rates. This is implausible and not
supported by experience [15]. Common explanations include excess discounting via
bounded rationality or a lack of common knowledge [8]. We have no reason to dis-
count these explanations, but the Euler equation for money from our formal model
(Equation 6) offers an additional one: future interest rates on the right-hand side of the
Euler equation are discounted by σ and (1− λ), both less than one.

11. The fact that interest rates do not forecast consumption growth well

Noted by Hall [28], and many others since [31]. Equation (6) suggests two explanations:

(i) The fact that λt > 0 on average (liquidity is valued);
(ii) The possibility that λt is positively correlated with interest rates and/or consump-

tion growth (it may even be driving the cycle), which soaks up explanatory power.
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12. The long-run volatility of the risk-free rate of return

Jordà et al. [34] noted that the risk-free rate of return is more volatile than the risky one
on a decade-by-decade basis, and more variable between countries. This is a puzzle
for standard asset pricing theory where the risky rate equals the safe one plus a risk
premium. It is no problem for the Liquidity-Augmented Model, however, as Equa-
tion (5) shows: the return on safe-and-liquid assets (iP ) is governed by monetary pol-
icy, whereas the return on risky-and-illiquid assets (rX with ηX→ 0) is governed by
fundamentals (the Fisher rate plus the risk premium). So no matter how volatile the
risk premium and growth expectations are in the short term, in the long term such
volatility may be averaged out, unlike changes in the stance of monetary policy that
can be slow-moving and persistent.

⟵ i
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return on money return on liquid bonds

implicit return on consuming today

Figure 8: Black line: nominal return on the medium of exchange, which has traditionally been zero
but may become something else if the means of payment of the future is an interest-paying CBDC.
Red line: 3-month U.S. T-bill rate. Blue lines: estimates of iFt as forecast of U.S. nominal consumption
growth (see Section 3).

7 Summary

We close by returning to the question that opened this paper: what is the opportunity cost of
holding zero-interest cash? The answer depends on what we compare it to. If the alternative
is spending the cash on consumption right now, then the opportunity cost equals the return
iF on a virtual, illiquid bond, which must be estimated rather than just observed. This return
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is composed of two spreads (Figure 8) which affect the economy in different ways. First,
the opportunity cost of holding money versus a liquid bond, which is the interest rate iP .
Second, the opportunity cost of holding a liquid bond versus buying consumption right
away, which is the aggregate liquidity premium ℓ. Both of these spreads – the spread from 0
to iP and the spread from iP to iF – combine to define the stance of monetary policy.

Appendix

From the CM problem, we have

∂mV CM = ∂bV
CM =

∂xV
CM

(1− δX)[ptdt + pXt ]
=

∂yV
CM

pt
=

u′(ct)

pt
.

The PM problem implies that so long as qt ≤ 1, we have yt = Λt
mt+Stbt

ptqt
. First order condi-

tions of the AM problem imply the following:

∂mV CM + θMt =
∂bV

CM

sBt
, ∂mV CM + θMt =

∂xV
CM

sXt
,

∂bV
PM
10 + θBt = sBt ∂mV PM

10 , ∂xV
PM
10 + θXt = sXt ∂mV PM

10

∂mV PM
11 + θMt =

∂bV
PM
11

sBt
, ∂xV

PM
11 + θXt = sXt

∂bV
PM
11

sBt
,

where, for the ease of exposition, we define V AM
0 = V AM

Λt=0, V AM
10 = V AM

Λt=1,St=0, and V AM
11 =

V AM
Λt=1,St=1. Furthermore, we have

∂bV
CM

sBt
=

∂xV
CM

sXt
⇔∂mV CM

sBt
=

(1− δX)[ptdt + pXt ]∂mV CM

sXt

⇔sXt = (1− δX)[ptdt + pXt ]sBt ,

and

∂mV AM
0 =

∂bV
CM

sBt
=

u′(ct)

sBt pt
(A.1)

∂mV AM
10 = ∂mV PM

10 =
∂yV

CM

ptqt
=

u′(ct)

ptqt

∂mV AM
11 =

∂bV
PM
11

sBt
=

∂yV
CM

sBt ptqt
=

u′(ct)

sBt ptqt

∂bV
AM
0 = ∂bV

CM =
u′(ct)

pt

∂bV
AM
10 = ∂bV

PM
10 + ηBt θ

B
t
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= ηBt s
B
t ∂mV PM

10 + (1− ηBt )∂bV
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sBt
qt

+ 1− ηBt

)
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pt

∂bV
AM
11 = ∂bV

PM
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ptqt
=

u′(ct)
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∂xV
AM
0 = ∂xV

CM = (1− δX)(dt + pXt /pt)u
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AM
10 = ∂xV
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10 + ηXt θXt

= ηXt sXt ∂mV PM
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PM
10

=

[
1− ηXt +

ηXt sBt
qt

]
(1− δX)(dt + pXt /pt)u

′(ct)

∂xV
AM
11 = ∂xV

PM
11 + ηXt θXt

= ηXt sXt
∂bV

PM
11

sBt
+ (1− ηXt )∂xV

PM
11

=

[
1− ηXt +

ηXt
qt

]
(1− δX)(dt + pXt /pt)u

′(ct). (A.2)

The first-order conditions of the CM problem imply the following:

u′(ct)

pt
= βE{λt+1σt+1∂mV AM

11 + λt+1(1− σt+1)∂mV AM
10 + (1− λt+1)∂mV AM

0 }, (A.3)

u′(ct)p
B
t

pt
= βE{λt+1σt+1∂bV

AM
11 + λt+1(1− σt+1)∂bV

AM
10 + (1− λt+1)∂bV

AM
0 },

u′(ct) = βE{λt+1σt+1∂xV
AM
11 + λt+1(1− σt+1)∂xV

AM
10 + (1− λt+1)∂xV

AM
0 }. (A.4)

Substitute (A.1)-(A.2) into (A.3)-(A.4) to get (6)-(7). On the balanced growth path, we have:

1 + iF =
(1 + iP )σλ

q
+

(1− σ)λ

q
+ (1− λ)(1 + iP ),

(1 + iF )
pX

p
= (1− δX)(d+ pX/p)

[
λ

[
1− ηX +

ηX [1− σ + σ(1 + iP )]

(1 + iP )q

]
+ 1− λ

]
= (1− δX)(d+ pX/p)

[
λ

[
1− ηX + ηX

1 + iF − (1− λ)(1 + iP )

(1 + iP )λ

]
+ 1− λ

]
= (1− δX)(d+ pX/p)

[
1− λ+

ηX(1 + iF ) + (λ− ηX)(1 + iP )

1 + iP

]
= (1− δX)(d+ pX/p)[ηX(1 + iF )/(1 + iP ) + 1− ηX ]

So:

q =
(1 + iP )σλ+ (1− σ)λ

1 + iF − (1− λ)(1 + iP )
and

pX

p
=

(1− δX)[1 + ηX(iF − iP )/(1 + iP )]d

iF − ηX(iF − iP )/(1 + iP )
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Finally, in the PM, late shoppers obtains 1/sB units of bonds for each unit of money they
have. Hence, the total money spent in the PM is equal to

MPM
t = λt(1− σt)Mt︸ ︷︷ ︸

Money carried by early shoppers from the CM

+ sBt λt(1− σt)[η
B
t Bt + (1− δX)[ptdt + pXt ]ηXt Xt]︸ ︷︷ ︸

Money obtained by early shoppers from the AM

+
λtσtMt + sBt λtσt(1− δX)[ptdt + pXt ]ηXt Xt

sBt︸ ︷︷ ︸
Bonds obtained by late shoppers from the AM

+ λtσtBt︸ ︷︷ ︸
Bonds carried by late shoppers from the CM

Substitute in the AM market clearing condition (8) to get

MPM
t =λt(1− σt)Mt + [1− λt(1− σt)]Mt

+ (1 + iPt )λtσtMt + λtσt[(1− δX)[ptdt + pXt ]ηXt Xt + ηBt Bt] + λtσt(1− ηBt )Bt

=Mt + (1 + iPt )λtσtMt + (1 + iPt )
σt[1− λt(1− σt)]

1− σt
Mt + λtσt(1− ηBt )Bt

=

[
1 +

σt
1− σt

(1 + iPt )

]
Mt + λtσt(1− ηBt )Bt (A.5)

Hence, on the balanced growth path, we have

p =
MPM

qy
=

[
1 + σ

1−σ (1 + iP )
]
M + λσ(1− ηB)B

(1+iP )σλ+(1−σ)λ
1+iF−(1−λ)(1+iP )

y

Substitute this into (9) to get

B

M
=
1− λ(1− σ)

ηBλ(1− σ)
(1 + iP ) . . .

− (1− δX)d
1 + σ

1−σ (1 + iP ) + λσ(1− ηB)B/M

(1+iP )σλ+(1−σ)λ
1+iF−(1−λ)(1+iP )

y

1 + iF − δX [1 + ηX(iF − iP )/(1 + iP )]

iF − ηX(iF − iP )/(1 + iP )

ηXX

ηB

⇒ B

M
=

1−λ(1−σ)
ηBλ(1−σ)

(1 + iP )− (1− δX)d
1+ σ

1−σ
(1+iP )

(1+iP )σλ+(1−σ)λ

1+iF−(1−λ)(1+iP )
y

1+iF−δX [1+ηX(iF−iP )/(1+iP )]
iF−ηX(iF−iP )/(1+iP )

ηXX
ηB

1 + (1−δX)dλσ(1−ηB)
(1+iP )σλ+(1−σ)λ

1+iF−(1−λ)(1+iP )
y
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