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1 Introduction

Why do U.S. Treasuries sell at higher prices than corporate or municipal bonds with similar
characteristics, even after controlling for safety?1 A popular answer is “due to their liquidity”.
More precisely, the Treasury sells its bonds at a premium because investors expect to be able to
(re)sell these bonds easily in the secondary market and are, thus, willing to pay higher prices in
the primary market.2 While this is a plausible explanation, some important questions remain.
Why are the secondary markets for other types of bonds less liquid than the one for Treasuries?
Is it hard(er) for sellers to find buyers due to some hardwired market friction (e.g., a poorly
organized interdealer network)? Or, are there not enough buyers drawn to those markets to
whom I could sell my bonds – and if so, why? Or, perhaps finding trading partners is not so
hard, but there are not enough bonds to go around in the market? Finally, how do these candi-
date explanations (and their interaction) affect asset prices and liquidity in general equilibrium?

To answer these questions, we develop a model where liquidity depends not only on the (ex-
ogenous) characteristics of the market an asset trades in, but also on the (endogenous) decision
of agents to visit that market. Our model has two main ingredients. The first is an empirically
relevant concept of asset liquidity: agents can liquidate assets for money in Over-the-Counter
(OTC) secondary markets which, as in Duffie, Gârleanu, and Pedersen (2005), are character-
ized by search and bargaining. This implies that assets are imperfect substitutes for money and
have, generally, positive liquidity premia. The second ingredient is an entry decision by the
agents. Each asset trades in a distinct OTC market, and agents choose to visit the market where
they expect to find the best terms. Additionally, we explore the endogenous determination of
the supply of liquid assets. Concretely, we focus on two issuers of assets who play a differenti-
ated Cournot game, where, crucially, the product (asset) differentiation stems from differences
in the microstructure of the secondary market where each asset trades.

First, we study the endogenous determination of OTC market participation, keeping asset
supplies fixed. Agents receive an idiosyncratic shock that determines whether they will need,
ex-post, additional liquidity in the secondary market (i.e., sell assets) or whether they will be
the providers of that liquidity (i.e., buy assets). An agent who turns out to be an asset seller
can only visit one OTC market at a time; since, typically, assets are costly to own due to the
liquidity premium, agents choose to ‘specialize’ ex-ante in asset A or B. Unlike sellers, who
must take into account the cost of holding a particular asset, the asset buyers make their market
choice in a more ‘elastic’ way since their money is good to buy any asset. As a result, when one
of the markets, say market A, has any kind of advantage – an exogenous matching advantage

1 For a thorough discussion of this stylized fact, see Krishnamurthy and Vissing-Jorgensen (2012).
2 For instance, former Assistant Secretary of the U.S. Treasury, Brian Roseboro, points precisely in this direc-

tion: “A deep, liquid, and resilient secondary market serves our goal of lowest-cost financing for the taxpayer by
encouraging more aggressive bidding in the primary market.” (A Review of Treasury’s Debt Management Policy, June
3, 2002, available at http://www.treas.gov/press/releases/po3149.htm.)
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or simply offering bigger surpluses because there are more A-assets to be traded – asset buyers
rush into that market more eagerly than sellers. In turn, this implies that the trade probability
in that market for sellers increases by far more than that for buyers. Crucially, it is the sell-
probability that affects the issue price, because someone who buys an asset (in the primary
market) cares about the ease of selling it later.

Through this channel, small differences in market microstructure can be magnified into a
big endogenous liquidity advantage for one asset, even if the matching function exhibits con-
stant returns to scale (CRS). When we consider increasing returns to scale (IRS), our channel
becomes further amplified because IRS promote concentration of investors in the market with
the exogenous advantage.

Thus, our model can shed some light on the superior liquidity of U.S. Treasuries over equally
safe corporate or municipal bonds. One may argue that this stylized fact has an easy explana-
tion: the secondary market for Treasuries is more well-organized (which in our model would
be captured by a more efficient matching technology). However, the relative illiquidity of cor-
porate or municipal bonds has been well-documented for many decades. If the key behind this
illiquidity was just some poorly organized secondary markets, one wonders why the issuers of
these bonds have not taken steps to improve the efficiency of these markets, which would lower
the rate at which they can borrow. Hence, it seems unlikely that the stylized fact in question can
be purely explained by differences in market efficiency. Our model can offer a deeper expla-
nation: perhaps Treasuries have a small exogenous advantage over other types of bonds, but
this is amplified into a large endogenous liquidity advantage by the fact that investors choose
to concentrate their trade into the secondary market for Treasuries, rather than get exposed to
the liquidity risk associated with trading other types of bonds.3

To quantitatively assess the importance of this amplification mechanism, we calibrate our
model to basic facts about yields in US fixed income markets, and use it to estimate how large
the exogenous liquidity differences must be in order to match the difference between Treasury
and high quality corporate bond yields observed in the data. We find that, even if we assume
CRS, our model requires the matching technology in the corporate bonds market to be just
seven percent less efficient than the one in the Treasury market to perfectly match the data.
And with just a small degree of IRS, the exogenous liquidity differentials that are required to
match the data virtually vanish (see Section 4.1 for details).

We also perform a counterfactual exercise. The secondary corporate bonds market is known
to be particularly segmented, and practitioners (BlackRock, 2014) have argued that corporate
bond liquidity would benefit from moving to a more consolidated secondary market.4 To test

3 For instance, Helwege and Wang (2021) report that many investors choose to not participate in the corporate
bonds markets altogether, because they are highly concerned about the risk of not being able to liquidate their
bonds quickly and at good terms, if such a need arises.

4This view is supported by the empirical findings of Oehmke and Zawadowski (2016), who find that “the
fragmented nature of the corporate bond market impedes its liquidity” (emphasis added).
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this proposal, we develop a version of our model with three assets trading in three distinct sec-
ondary markets – representing Treasuries, AAA, and AA corporate bonds – and ask the model
what happens when we consolidate the corporate bond markets. Indeed, we find that the liq-
uidity premia for both AAA and AA bonds increase, while the one on Treasuries decreases.

Next, we study the duopoly game between two issuers, who realize that the demand for
their assets depends on the (exogenous and endogenous) liquidity characteristics of the sec-
ondary markets where their assets trade.5 When the matching technology exhibits CRS, asset
supplies tend to be strategic substitutes. In this case, equilibrium issue sizes are low, and the
prices of both assets include liquidity premia. When the matching technology exhibits IRS,
asset supplies tend to be strategic complements. This promotes aggressive competition among
issuers, in the sense that equilibrium issue sizes can be large, and that equilibria of the subgame
tend to be in a corner in which only one of the two OTC markets operates, and therefore, only
one asset ends up liquid.

We also study how changes in the exogenous market microstructure affect optimal issue
sizes, and, consequently, asset prices and liquidity premia. More precisely, letting δi, i = A,B,
denote the matching efficiency in the OTC market, we start with δA = δB and study the effect of
decreases in δB. The exogenous liquidity advantage of asset A is magnified by the entry choices
of agents, which, in turn, feeds back into a rising (falling) liquidity premium on asset A (B).
As δB declines further, there comes a point at which issuer A has an incentive to boost up her
supply and drive B out of the secondary market altogether. At that point asset B becomes fully
illiquid. As δB falls even further, the threat of competition by asset B becomes so insignificant
that issuer A practically turns into a monopolist in the supply of liquid assets.

With a degree of IRS in the matching technology, this process is accelerated. We show that
asset B will become completely illiquid even if the matching function in market B is almost
equally efficient as the one in market A (say, δB = 0.99δA), and there is only a tiny amount of
IRS in the matching function. If one were to look at these numbers, one might infer that as-
set B cannot be much less liquid than asset A. This conclusion would be mistaken, because
it would be based only on the exogenous factors. What is more important is that agents en-
dogenously choose to concentrate their trade in market A because they expect other agents will
do the same – and, reinforcing this, because both issuers have an incentive to compete for this
concentration by issuing large (enough) amounts.

Finally, our model delivers some important results regarding welfare. First, and most im-
portantly, there exists no monotonic relationship between welfare and “liquidity” (for any mea-
sure of liquidity we could choose). Second, unlike output, social welfare tends to be maxi-
mized for small-to-intermediate quantities of liquid assets. This alone does not tell us whether

5 In Appendix A, we provide evidence that asset issuers act strategically. That said, the duopoly game played
between two issuers is not meant to be taken literally, but to highlight that allowing for an endogenous determina-
tion of asset supplies offers important economic insights that are complementary to the analysis with exogenous
asset supplies.
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a monopoly or a Cournot duopoly of liquid assets would be superior; each is possible, depend-
ing on parameters. However, it does tell us that aggressive competition for secondary market
liquidity, where issuers issue large amounts and drive liquidity premia to zero, is suboptimal.
Consequently, market segmentation and exogenous liquidity differences can be good for wel-
fare because they tend to discourage such aggressive competition.

The present paper is related to a branch of the recent literature, often referred to as “New
Monetarism” (see Lagos, Rocheteau, and Wright, 2017), that has highlighted the importance
of asset liquidity for the determination of asset prices. See for example Geromichalos, Licari,
and Suárez-Lledó (2007), Lagos and Rocheteau (2008), Lester, Postlewaite, and Wright (2012),
Nosal and Rocheteau (2013), Andolfatto and Martin (2013), Andolfatto, Berentsen, and Waller
(2014), and Hu and Rocheteau (2015). In these papers assets are ‘liquid’ because they serve as a
medium of exchange in frictional decentralized markets.6 In some other papers, liquidity prop-
erties stem from the fact that assets serve as collateral, as in Venkateswaran and Wright (2014)
and Andolfatto, Martin, and Zhang (2017).7 The majority of this literature has studied asset
liquidity (and prices) under the simplifying assumption that asset supply is fixed. Exceptions
include Rocheteau and Rodriguez-Lopez (2014) and Branch, Petrosky-Nadeau, and Rocheteau
(2016). Moreover, Bethune, Sultanum, and Trachter (2019) consider an environment with asset
issuance and decentralized secondary markets, but they focus on efficiency and policy rather
than liquidity. Our paper is also related to Caramp (2017) who endogenizes asset creation with
a focus on asset quality and asymmetric information.

A key difference of our paper with the works mentioned so far is that here asset liquidity
is indirect. Assets never serve as media of exchange (or as collateral) to purchase consumption.
Their liquidity stems from the fact that agents can sell them for money in a secondary market.
This idea is exploited in a number of recent papers, including Geromichalos and Herrenbrueck
(2016), Berentsen, Huber, and Marchesiani (2014, 2016), Herrenbrueck (2019a), Mattesini and
Nosal (2016), and Geromichalos, Herrenbrueck, and Lee (2018). As argued earlier, we believe
that this approach is empirically relevant for a large class of financial assets. A common fea-
ture of these papers is that a secondary asset market allows agents to rebalance their liquidity
after an idiosyncratic expenditure need has been revealed. This idea draws upon the work of
Berentsen, Camera, and Waller (2007), where the channeling of liquidity takes place through a
competitive banking system. Our work is also related to Lagos and Zhang (2015), but in that
paper agents use money to purchase assets (rather than goods) in an OTC financial market.

Our work is also related to the literature initiated by the seminal work of Duffie et al. (2005),

6 Consequently, in most of these papers, assets compete with money as media of exchange. In recent work,
Fernández-Villaverde and Sanches (2019) extend the Lagos and Wright (2005) framework to study the interesting
question of competition among privately issued electronic currencies, such as Bitcoin and Ethereum.

7 Some papers within this literature have shown that adopting models where assets are priced both for their
role as stores of value and for their liquidity may be the key to rationalizing certain asset pricing-related puzzles.
See Lagos (2010), Geromichalos, Herrenbrueck, and Salyer (2016), and Herrenbrueck (2019b).
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which studies how frictions in OTC financial markets affect asset prices and trade. A non-
exhaustive list of such papers includes Vayanos and Wang (2007), Weill (2007, 2008), Vayanos
and Weill (2008), Lagos and Rocheteau (2009), Lagos, Rocheteau, and Weill (2011), Afonso and
Lagos (2015), Chang and Zhang (2015), Üslü (2019). Our paper is uniquely distinguished from
all these papers, starting with the very concept of liquidity: we have a monetary model where
agents sell assets for cash after learning of a consumption opportunity, while in those papers,
agents differ in the utility flow derived from holding an asset and pay for assets with transfer-
able utility. Furthermore, we characterize the strategic incentives facing issuers of potentially
liquid assets, and thereby endogenize the supply of such assets in addition to their liquidity.

Our paper is also related to a strand of the Industrial Organization literature that studies the
effect of secondary markets for durable goods on the producers’ pricing decisions. Examples
include Rust (1985, 1986). In these papers, the existence of a secondary market, where buyers
could sell the durable good in the future, affects the pricing decisions of sellers now through
affecting the buyers’ willingness to pay for the good.8 In our model, if secondary markets were
shut down (so that assets have to be held to maturity), agents would be only willing to buy
assets at their fundamental value. The existence of secondary markets endows assets with (in-
direct) liquidity properties, which, in turn, allows issuers to borrow funds at lower rates (i.e.,
sell bonds at a price that includes a liquidity premium).

The paper is organized as follows. Section 2 describes the model. In Section 3, we study the
economy with exogenous asset supplies, and in Section 4, we calibrate our model to the data.
Section 5 offers microfoundations for one of the key assumptions. In Section 6, we endogenize
asset supplies by characterizing the game between asset issuers, and Section 7 concludes. Ap-
pendix A discusses empirical counterparts of our modeling choices, and Appendix B contains
some technical details of the model. Finally, the Web Appendix contains several extensions of
our analysis – only one asset issuer being strategic, one asset issuer being a Stackelberg leader,
and one asset issuer having a higher cost of creating assets than the other – and an analytical
characterization of the equilibria in our model.

2 The model

Time is discrete and the horizon is infinite. Each period consists of three sub-periods where dif-
ferent economic activities take place. In the first sub-period, two distinct OTC financial markets
open, denoted by OTCj , j = {A,B}. Agents who hold assets of type j can sell them for money
in OTCj . One could think of asset A as Treasury bonds and asset B as high-quality corporate
bonds. In the second sub-period, agents visit a decentralized goods market where trade is bilat-
eral, and agents are anonymous and lack commitment. We refer to this market as the DM. Due

8 Within the context of financial rather than commodity markets, this idea is also exploited by Geromichalos
et al. (2016) and Arseneau, Rappoport, and Vardoulakis (2015).
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to the aforementioned frictions, trade necessitates a medium of exchange in the DM, and this
role can be played only by money. During the third sub-period, economic activity takes place
in a centralized market, which is similar in spirit to the settlement market of Lagos and Wright
(2005) (henceforth, LW). We refer to this market as the CM. There are two permanently distinct
types of agents, consumers and producers, named by their role in the DM, and the measure of
both is normalized to the unit. Agents live forever. There are also two agencies, j = {A,B},
that issue asset j in its respective primary market which opens within the third sub-period.

All agents discount the future between periods (but not sub-periods) at rate β ∈ (0, 1). Con-
sumers consume in the DM and CM sub-periods and supply labor in the CM sub-period. Their
preferences within a period are given by U(X,H, q) = X −H + u(q), where X,H represent con-
sumption and labor in the CM, respectively, and q consumption in the DM. Producers consume
only in the CM, and they produce in both the CM and the DM. Their preferences are given
by V(X,H, h) = X−H− q, where X,H are as above, and q stands for units of production in the
DM. We assume that u is twice continuously differentiable with u′ > 0, u′(0) = ∞, u′(∞) = 0,
and u′′ < 0. Let q∗ denote the optimal level of production in a bilateral meeting in the DM,
i.e., q∗ ≡ {q : u′(q∗) = 1}. The issuers of assets are only present in the CM. Their preferences
are given by Y(X,H) = X −H , where X,H are as above. The issuers also discount the future
at rate β. What makes them special is that they can issue assets that potentially carry liquidity
premia, thus allowing them to obtain net profits out of this operation.

We now provide a detailed description of the various sub-periods. In the third sub-period,
all agents consume and produce a general good or fruit. All agents (including the issuers)
have access to a technology that transforms one unit of labor into one unit of the fruit. Agents
can choose to hold any amount of money which they can purchase at the ongoing price φt

(in real terms). The supply of money is controlled by the monetary authority, and it evolves
according to Mt+1 = (1 + µ)Mt, with µ > β − 1. New money is introduced, or withdrawn
if µ < 0, via lump-sum transfers to consumers in the CM. Money has no intrinsic value, but
it possesses all the properties that make it an acceptable medium of exchange in the DM (e.g.,
it is portable, storable, and recognizable by agents). Agents can also purchase any amount of
asset j at price pj , j = {A,B} (in nominal terms). These assets are one-period nominal bonds:
each unit of (either) asset purchased in period t’s CM pays one dollar in the CM of t + 1.9 Let
the supply of the assets be denoted by (At, Bt). In Sections 3-5, we will treat them as fixed; in
Section 6, they will be chosen endogenously by the issuers. Each issuer chooses the supply of
her asset as a best response to her rival’s action in order to maximize profits, realizing that both
her own and her rival’s assets provide indirect liquidity services to an asset purchaser.

After making their portfolio decisions in the CM, consumers receive an idiosyncratic con-
sumption shock: a measure ℓ < 1 of consumers will have a desire to consume in the forthcoming

9 Since the assets are nominal, in steady state their supply must grow at rate µ, too (see, for example, Berentsen
and Waller, 2011).
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DM. We refer to them as the C-types, and to the remaining 1− ℓ consumers as the N-types (“not
consuming”). Since consumers did not know their type when they made their portfolio choices,
N-types will typically hold some cash that they will not use in the current period, while C-types
may find themselves short of cash (since carrying money is costly). The OTC round of trade is
placed after the idiosyncratic uncertainty has been resolved, but before the DM opens to allow
a reallocation of money into the hands of those who value it most. OTC financial markets are
segmented: an agent who wants to sell or purchase assets is free to enter either OTCA or OTCB,
but she must choose one market at a time.10 Hence, coordination is extremely important, and
agents will pick the market where they expect to find better trading conditions.

Once C-types and N-types have decided which market they wish to enter, a matching func-
tion, fj(Cj, Nj), brings together sellers (C-types) and buyers (N-types) of assets in the OTCj , in
bilateral matches. Throughout the paper we use the specific functional form:

fj(x, y) = δj

(
xy

x+ y

)1−ρ

(xy)ρ ,

with δj ∈ [0, 1] and ρ ∈ [0, 1], and thus fj(x, y) ≤ min{x, y}. The term δj captures exogenous
efficiency factors in OTCj , such as the density of the dealer network. The term ρ ∈ [0, 1] governs
returns to scale in matching; for concreteness, notice that the elasticity of each side’s matching
probability with respect to scale, keeping the ratio of buyers to sellers fixed, is ρ. This functional
form allows us to study both the case of CRS (ρ = 0) and IRS (ρ > 0). Within any match in either
of the OTC markets, the C-type and N-type split the available surplus based on proportional
bargaining (Kalai, 1977), with θ ∈ (0, 1) denoting the C-type’s bargaining power.

The second sub-period is the standard decentralized goods market of the LW model. Ac-
tive consumers (C-type) meet bilaterally with producers and negotiate over the terms of trade.
Exchange must take place in a quid pro quo fashion, and only money can serve as a medium of
exchange.11 Since all the interesting insights of the paper follow from agents’ interaction in the
OTC round of trade, we wish to keep the DM as simple as possible. To that end, we assume
that all C-type consumers match with a producer, and that in any match the consumer makes a
take-it-or-leave-it (TIOLI) offer.

Figure 1 summarizes the timing of the main actions in the model. It is important to high-
light that the secondary OTC markets are completely separate from the primary markets where
assets are first issued. Nevertheless, the microstructure of the secondary markets, summarized
by the parameters δj, ρ, and θ, will determine the liquidity properties of the assets and, conse-
quently, their selling price in the primary market.

10 We discuss this assumption in Appendix A, and we provide microfoundations for it in Section 5. Further-
more, perfectly integrated markets are equivalent to a special case of our model, described in Proposition 1, part (e).

11 Here we shall make this an assumption of the model. However, a number of recent papers in the monetary-
search literature, such as Rocheteau (2011) and Lester et al. (2012) do not place any restrictions on which objects
can serve as media of exchange and show that, under asymmetric information, fiat money will endogenously arise
as a superior medium of exchange, thus, providing a micro-founded justification for our assumption.
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CMt-1

   work, consume, 

purchase assets A,B

OTCA,t

OTCB,t

C-types sell asset A to 

   N-types for money

C-types sell asset B to 

   N-types for money

DMt

C-types purchase DM 

    good with money

CMt

   work, consume, 

purchase assets A,B

Idiosyncratic Consumption 

         Shock is Revealed

C-types and N-types choose 

        to visit OTCA or OTCB

Figure 1: Timing of events.

3 The economy with exogenous asset supply

In this section we analyze the economy, treating the supplies of assets (A,B) as given. The task
of endogenizing the asset supplies is carried out in Section 6.

In order to streamline the analysis, we relegate the details of defining the value functions
and characterizing the terms of trade in the OTC markets and the DM to Appendix B.1. Here
we include a summary. All agents in the economy have linear preferences over labor and con-
sumption goods in the CM, which will induce linear value functions in the CM, and make a
number of economic decisions easy to characterize. First, consider a DM meeting between a
producer and a C-type consumer who brings a quantity m of money. The consumer will either
buy the first-best quantity q∗, or, if her money is not enough, spend all of it on the quantity
q = φm < q∗. Second, consider a meeting in the OTC market for asset j ∈ {A,B}, where the
N-type brings a quantity m̃ of money, and the C-type brings a portfolio (m, dj) of money and
asset j. The N-type and C-type split the available surplus based on proportional bargaining:
the N-type buys the C-type’s assets and compensates him with money.12

12 In OTC trade, three kinds of outcomes are possible: (a) the C-type’s asset holdings could limit the trade; (b)
the N-type’s money holdings could limit the trade; (c) or both are so large that the pooled money is enough to
purchase the first-best DM quantity (m+ m̃ > q∗/φ), and the C-type has enough assets to compensate the N-type.
In Geromichalos and Herrenbrueck (2016), we showed that assets can only be priced (in the CM) at a determinate
liquidity premium if case (a) applies in the corresponding OTC market. Case (c) is also relevant as the boundary of
case (a), where an asset becomes abundant and the liquidity premium converges to zero. Case (b), however, only
complicates the general equilibrium analysis. Since it does not feature a positive liquidity premium, and since our
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What is the probability of matching in an OTC market for an individual agent? First,
let eC ∈ [0, 1] and eN ∈ [0, 1] denote the fractions of C-types and N-types, respectively, who
choose to enter OTCA. Then, the measure of asset sellers and buyers in OTCA is given by eCℓ

and eN(1 − ℓ), respectively, and the measure of asset sellers and buyers in OTCB is given
by (1 − eC)ℓ and (1 − eN)(1 − ℓ). Letting αij ∈ [0, 1] denote the matching probabilities for
agents of type i = {C,N} in OTCj , j = {A,B}, we have:

αCA ≡
fA

(
eCℓ, eN(1− ℓ)

)
eCℓ

, αCB ≡
fB

(
(1− eC)ℓ, (1− eN)(1− ℓ)

)
(1− eC)ℓ

, (1)

αNA ≡
fA

(
eCℓ, eN(1− ℓ)

)
eN(1− ℓ)

, αNB ≡
fB

(
(1− eC)ℓ, (1− eN)(1− ℓ)

)
(1− eN)(1− ℓ)

. (2)

3.1 Optimal behavior

As shown in Appendix B.1, the producers’ decisions in this model are trivial. Thus, in what
follows we use the term ‘agents’ to refer to consumers, since these are the types who make in-
teresting portfolio decisions. In the OTC market, these agents will take on roles as ‘asset sellers’
and ‘asset buyers’ depending on the outcome of their consumption shock (C or N, respectively).
The ‘producers’ (who sell goods in the DM) will not come up again in the main text.

As is standard in models that build on LW, all agents choose their optimal portfolio indepen-
dently of their trading histories in preceding markets. This result follows from the “no-wealth-
effects” property, which, in turn, stems from the quasilinear preferences. Here, in addition to
choosing an optimal portfolio of money and assets, (m̂, d̂A, d̂B), agents also choose which OTC
market they will enter in order to sell or buy assets once their type has been revealed. The
agent’s choice can be analyzed with an objective function, denoted by J(m̂, d̂A, d̂B), which sum-
marizes the cost and benefit from choosing portfolio (m̂, d̂A, d̂B). To obtain J , substitute the
values of trading in the OTC markets and in the DM (Equations B.4-B.8, derived in the ap-
pendix) into the maximization operator of the CM value function (Equation B.1). After using
the linearity of the value function itself (Equation B.2), we can drop all terms that do not depend
on the choice variables (m̂, d̂A, d̂B) to obtain the objective function:

J(m̂, d̂A, d̂B) = −φ
(
m̂+ pAd̂A + pBd̂B

)
+ βφ̂

(
m̂+ d̂A + d̂B

)
+ βℓ

[
u (φ̂m̂)− φ̂m̂+max

{
αCASCA︸ ︷︷ ︸

enter A

, αCBSCB︸ ︷︷ ︸
enter B

}]
, (3)

so that the optimal portfolio choice is fully described by max J , where the current prices of

interest is in asset issuers who seek to exploit such a premium, we exclude case (b) from our analysis. This is done
by assuming that inflation is not too large, so that all agents carry at least half of the first-best amount of money.
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money and assets, (φ, pA, pB), and the future price of money, φ̂, are taken as given.
The interpretation of the objective function is intuitive. The first term represents the cost

that the agent needs to pay in order to purchase the portfolio (m̂, d̂A, d̂B) in the CM, and the
second term represents the benefit from selling these assets in the CM of the next period. The
third term reveals that with probability ℓ the agent will be a C-type in the next period. In this
case she can use her money (m̂) to purchase consumption in the DM (generating a net surplus
equal to u(φ̂m̂) − φ̂m̂), and she can enter OTCj , j = A,B, in order to acquire more money by
selling her assets (d̂A or d̂B). In the last expression, the terms SCj represent the surplus for the
C-type in OTCj , but the agent will actually enjoy this surplus only if she gets to match in that
market, an event that occurs with probability αCj .13 Exploiting the OTC bargaining solution
(i.e., Lemma 2) and Equation (B.9), one can verify that, for j = {A,B}:

SCj =


θ[u(q∗)− u(φ̂m̂)− φ̂(m∗ − m̂)],

if φ̂d̂j ≥ (1− θ)[u(q∗)− u(φ̂m̂)] + θ(q∗ − φ̂m̂),

θ[u(φ̂(m̂+ ζ̃j))− u(φ̂m̂)− φ̂ζ̃j], otherwise,

(4)

where ζ̃j solves φ̂d̂j = (1− θ)[u(φ̂(m̂+ ζ̃j)− u(φ̂m̂)] + θφ̂ζ̃j . The condition φ̂d̂j ≥ (1− θ)[u(q∗)−
u(φ̂m̂)] + θ(q∗ − φ̂m̂) states that in this case the agent’s asset holdings are “abundant”, i.e., they
allow her to reach the first-best amount of money, m∗, through OTC trade.

Two important observations are in order. First, while we have only imposed an exogenous
segmentation assumption on the OTC markets, an endogenous segmentation will arise in the
primary markets: i.e., agents will typically choose to purchase only asset A or asset B in the CM.
In equilibrium, assets will trade at a premium, and agents will only pay this premium if they
expect to sell the asset in the OTC. Since they can only enter one OTC (and anticipate having to
choose eventually), they will choose ex-ante (i.e., in the CM), to “specialize” in asset A or B.14

This, in turn, implies that an agent’s portfolio choice is intertwined with the choice of which
OTC market to enter in case she turns out to be a C-type. For instance, we shall see that agents
who choose to trade in a less liquid OTC market will self-insure against the liquidity shock by
carrying more money.

The second important observation is that the agent’s choice of which market to enter if she
turns out to be an N-type is unrelated with her choice of asset specialization in the CM. This
is because the N-type’s asset and money holdings do not affect the bargaining solution in OTC

13 One may wonder why there is no (1− ℓ)-term in the objective function. Does the N-type not generate value
by bringing money into the OTC? Yes, this is the case, as the full value function (Equation B.1) shows. But the
technical restriction (6), justified in Footnote 12, guarantees that the N-type’s money is never marginal in OTC
trade. Hence the N-branch can be dropped from the portfolio choice problem; the only decision to be made along
the N-branch is which OTC market to enter.

14 Agents may still hold the other asset if indifferent, i.e., if that asset is abundant or illiquid.
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trade (see Lemma 2). As a result, regardless of her asset choice which by the time the N-type
makes her OTC entry choice is sunk, this agent will enter OTCA only if:

αNASNA ≥ αNBSNB.

In the last expression, the terms SNj represent the surplus for the N-type in OTCj . Exploiting
Lemma 2 and equation (B.10), one can verify that, for j = {A,B}:

SNj =


(1− θ)[u(q∗)− u(φ̂m̃)− φ̂(m∗ − m̃)],

if φ̂d̃j ≥ (1− θ)[u(q∗)− u(φ̂m̃)] + θ(q∗ − φ̂m̃),

(1− θ)[u(φ̂(m̃+ ζ̃j))− u(φ̂m̃)− φ̂ζ̃j], otherwise,

(5)

where ζ̃j solves φ̂d̃j = (1 − θ)[u(φ̂(m̃ + ζ̃j) − u(φ̂m̃)] + θφ̂ζ̃j and (m̃, d̃j) stand for the N-type’s
expectation about the money and asset-j holdings, respectively, that her trading partner, a C-
type, will carry into OTCj . The condition φ̂d̃j ≥ (1 − θ)[u(q∗) − u(φ̂m̃)] + θ(q∗ − φ̂m̃) states
that the asset holdings of the C-type are large enough to allow her post-OTC money balances
to reach the first-best amount, m∗.

3.2 Equilibrium

In steady state, the cost of holding money can be summarized by the parameter i ≡ (1+µ−β)/β;
exploiting the Fisher equation, this parameter represents the nominal interest rate on an illiquid
asset. For example, in any equilibrium it must be true that pj ≥ 1/(1 + i), j = {A,B}, since
otherwise there would be an infinite demand for the assets; however, the inequality could be
strict if the assets are liquid. The restriction µ > β− 1 translates into i > 0. We also assume that:

i < ℓ(1− θ) [u′ (q∗/2)− 1] , (6)

a technical restriction. It ensures that q0j > q∗/2 for every agent, thus the N-type’s money will
never be the limiting factor in OTC trade. See our explanation in Footnote 12, and note that if
we did have q0j < q∗/2, the implied burden of the inflation tax would be enormous.

We have eleven endogenous variables.15 First, we have the equilibrium real balances {zA, zB}
held by the agent who chooses to specialize in asset A or B (recall from the discussion in Sec-
tion 3.1 that an agent who chooses to trade in OTCA will typically make different portfolio
choices than one who chooses to trade in OTCB). Next, we have the equilibrium quantities
{q0A, q1A, q0B, q1B}. These represent the quantity of DM good purchased by a C-type agent who

15 This count excludes the terms of trade in the OTC markets, since they follow directly from the main endoge-
nous variables described in this section and Lemma 2.
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either did not trade in the OTC market (indexed by 0), or who traded (indexed by 1), depending
on whether they chose to specialize in asset A or asset B. Next, we have the prices of the three
assets {φ, pA, pB}. Finally, we have the entry choices {eC, eN}, i.e., the fractions of C-types and
N-types, respectively, who choose to enter OTCA.

We now show that five out the eleven endogenous variables can be derived from the fol-
lowing six variables, {q0A, q1A, q0B, q1B, eC, eN}. First, we have zj = q0j , for j = {A,B}, since the
C-type who does not trade in the OTC can only purchase the amount of DM goods that her
own real money holdings, zj , allow her to afford. Second, the price of money solves:

φM = eCq0A + (1− eC)q0B. (7)

This equation is the market clearing condition in the market for money. Third, the equilibrium
asset prices must satisfy the demand equations:16

pj =
1

1 + i

(
1 + ℓ αCj

θ

ω(q1j)
[u′(q1j)− 1]

)
, for j = {A,B}, (8)

where

ω(q) ≡ θ + (1− θ)u′(q).

For future reference, notice that as long as q1j < q∗, the marginal unit of the asset allows the
agent to acquire additional money which she can use in order to boost her consumption in the
DM. In this case, the agent is willing to pay a liquidity premium in order to hold the asset. On
the other hand, if q1j = q∗, the term inside the square brackets becomes zero, and pj = 1/(1+ i),
which is simply the fundamental price of a one-period nominal bond.

The analysis so far establishes that if one had solved for {q0A, q1A, q0B, q1B, eC, eN}, then the
remaining five variables could also be immediately determined. Hence, hereafter we refer to
these six variables as the “core” variables of the model. We now turn to the description of the
equilibrium conditions that determine the core variables. Throughout this discussion, recall
that the terms eC, eN are also implicitly affecting the arrival rates αCj .

First, the money demand equation for those specializing in asset j:

i = ℓ

(
1− αCj

θ

ω(q1j)

)
[u′(q0j)− 1] + ℓ αCj

θ

ω(q1j)
[u′(q1j)− 1], for j = {A,B}. (9)

Note that we have defined αij = 0 if there is no entry at all into market j. If that is the case, q0j
and q1j are still defined as limits even though nobody actually trades at those quantities.

16 These follow directly from obtaining the first-order conditions in the agent’s objective function, i.e., Equa-
tion (3), and imposing equilibrium quantities. Notice that the asset prices do not only depend on the variables q1j ,
but also on the equilibrium values of eC , eN which affect the arrival rates αCj ; see Equations (1).
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Next, the OTC trading protocol links q0j and q1j . Consider for instance market A. The
bargaining solution, evaluated at equilibrium quantities, becomes:

q1j = min{q∗, q0j + φζ̃j}, for j = {A,B},

where ζ̃j solves φdj = (1−θ)[u(φ(m+ ζ̃j)−u(φm)]+θφζ̃j where dA = A/eC and dB = B/(1−eC),
the amount of assets that the C-type brings into OTCj .17 Even though the aggregate supply of
asset A is A, the agent under consideration holds more than the average because some agents
do not hold asset A at all (they specialize in asset B), and the same argument goes also with
asset B. After substituting the price of money from Equation (7) into the last expression, we
obtain two equations, one for each market:

q1A = min

{
q∗, q0A +

1

θ

A

M

eCq0A + (1− eC)q0B
eC

− 1− θ

θ
[u(q1A)− u(q0A)]

}
, (10)

q1B = min

{
q∗, q0B +

1

θ

B

M

eCq0A + (1− eC)q0B
1− eC

− 1− θ

θ
[u(q1B)− u(q0B)]

}
. (11)

If it happens that eC = 1 (no C-types enter the B-market) and B > 0, then we define q1B = q∗ as a
limit, because a C-type of infinitesimal size who decided to deviate and hold asset B could hold
the entire stock of it, which would certainly satiate them in an OTC trade – in the hypothetical
case that there was an N-type in the B-market willing to trade with them. Similarly, if eC = 0

and A > 0, then we define q1A = q∗.
How large can the aggregate supply of an asset be for the asset to remain scarce in OTC

trades? Clearly, the asset is more likely to be scarce if its ownership is diluted, i.e., if many
agents choose to hold that asset in the CM. So, for example, asset A is most likely to be scarce
if eC = 1. But in this special case, Equation (10) tells us that the asset is scarce (q1A < q∗)
only if the condition q∗ > q0A[1 + A/(θM)] − (1 − θ)/θ[u(q1A) − u(q0A)] is satisfied. On the
boundary, q1A = q∗, so we can use the money demand equation (9) to obtain the bounds:

Ā ≡ Mθ

[
q∗

q̄0A
+

1− θ

θ

u(q∗)− u(q̄0A)

q̄0A
− 1

]
, where q̄0A solves i = [ℓ− θfA(ℓ, 1− ℓ)][u′(q̄0A)− 1],

B̄ ≡ Mθ

[
q∗

q̄0B
+

1− θ

θ

u(q∗)− u(q̄0B)

q̄0B
− 1

]
, where q̄0B solves i = [ℓ− θfB(ℓ, 1− ℓ)][u′(q̄0B)− 1].

There are three things to notice here. First, if A > Ā, then asset A is certain to be abundant but
the reverse is not always true, because asset ownership can be concentrated in the hands of a few
agents. Second, if we did fix eC = 1 so that ownership of asset A was maximally diluted, then

17 If the C-type’s asset holdings are plentiful in the OTC, then we know that this agent will be able to purchase
the first-best amount of money in the DM, hence, q1j = q∗. On the other hand, if the asset is scarce in OTC trade,
the C-type gives away all of her assets, dj .
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asset A would indeed be abundant if and only if A ≥ Ā, and conversely for asset B. Third, if
the market for asset A has an exogenous liquidity advantage (δA > δB), then Ā > B̄, and vice
versa. For convenience, we define the maximal upper bound on asset supply beyond which
either asset is certain to be abundant:

D̄ ≡ max{Ā, B̄}.

The remaining task is to characterize the OTC market entry choices. Consider first a C-type.
As we have already discussed, this type at the beginning of the period has already made the
choice to hold either asset A or asset B, so the choice of which market to enter has effectively
been made. Evaluating equation (4) at equilibrium quantities, we find that her surplus of trad-
ing in market j ∈ {A,B} equals:18

SCj = θ[u(q1j)− u(q0j)− q1j + q0j]. (12)

But since the agent’s portfolio choice effectively determines her market choice if she turns out
to be a C-type, this surplus has to be balanced not only against the probability of needing to
trade and actually matching (ℓ× αCj), but also against the cost of carrying the asset. Hence, we
define the “net” surplus that the agent obtains if she chooses to specialize in asset j to be:

S̃Cj ≡ −iq0j − [(1 + i)pj − 1][(1− θ)(u(q1j)− u(q0j)) + θ(q1j − q0j)] . . . (13)

+ ℓ[u(q0j)− q0j] + ℓ αCjSCj,

where we can use the money and asset demand equations (8 and 9) to substitute for i and pj .
Thus, in equilibrium, the C-types’ portfolio choice eC must satisfy:

eC =


1, if S̃CA > S̃CB,

0, if S̃CA < S̃CB,

∈ [0, 1], if S̃CA = S̃CB.

(14)

Finally, we want to characterize the market choice of the N-type agents. Since these agents
are asset buyers, their own asset holdings do not matter, so they can enter the market for either
asset independently of which asset they chose to hold in the preceding CM. Thus, an N-type
will simply enter the market in which she expects a greater surplus, accounting for the proba-

18 This equality holds regardless of whether the asset is plentiful in the OTC meeting or not. Consider first
the case of plentiful assets. For this case evaluating the relevant (i.e., the “abundant”) branch of Equation (4) at
equilibrium quantities yields SCj = θ[u(q∗)−u(q0j)− q∗+ q0j ], which is exactly what one would obtain if q1j = q∗

was imposed on Equation (12). Next, consider the case of scarce assets and for simplicity focus on OTCj . In this
case, evaluating (4) at equilibrium quantities yields SCj = θ[u(q1j)− u(q0j)− q1j + q0j ].
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bility of trading. Evaluating equation (5) at equilibrium quantities implies that the surplus for
the N-type who chooses to enter OTCj is given by:

SNj = (1− θ)[u(q1j)− u(q0j)− q1j + q0j]. (15)

Thus, in equilibrium, the N-types’ entry choice eN must satisfy:

eN =


1, if αNASNA > αNBSNB,

0, if αNASNA < αNBSNB,

∈ [0, 1], if αNASNA = αNBSNB.

(16)

We can now define a steady-state equilibrium in the model with fixed asset supplies:

Definition 1. Assume (for now) that asset supplies are fixed and equal to (A,B) ∈ R2
+. A steady-

state equilibrium for the core variables of the model is a list {q0A, q1A, q0B, q1B, eC , eN} such that
Equations (9) for j = {A,B}, (10), and (11) hold, and agents’ entry choices satisfy Equations (14)
and (16).

3.3 Characterization of equilibrium

We are now ready to characterize the equilibria of the economy, summarized by the core vari-
ables {q0A, q1A, q0B, q1B, eC, eN}, conditional on the asset supplies A,B ≥ 0. Before we go to the
technical details, it is helpful to gain some intuition by considering the optimal entry decision
of the representative N-type, who takes as given the term eN , the proportion of other N-types
who enter the A-market, and best responds by entering in either market A or B. A higher value
of eN implies a bigger congestion among N -types in market A, a force that discourages our repre-
sentative N-type from entering into that market. On the other hand, a higher eN implies that a
larger fraction of C-types will be drawn to market A, because C-types like a market with many
N-types, and this force encourages our representative N-type to enter into that market. And,
to make things even more interesting, a higher value of eC implies that the supply of asset A,
which is fixed for now, will be diluted among a larger number of agents (this channel becomes
more relevant if the supply of asset A is scarce). Hence, in any bilateral meeting in OTCA, the
surplus is more likely to be limited because the C-type is constrained by her asset holdings, yet
another force that discourages our representative N -type from entering into market A.

Summing up, an increase in the term eN generates multiple and opposing forces, and may
have non-monotonic effects on the optimal entry decision of the representative N-type. What
one can say safely is that everything else equal, the typical N-type is more likely to enter into
market A if: (i) δA > δB, because then the former market has an exogenous matching advantage;
and (ii) A > B, because then there is a larger potential surplus when trading asset A.
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Moving to the formal analysis, we construct equilibria as fixed points of eN . To be specific:
first, we fix a level of eN ; then we solve for the optimal portfolio choices through Equations (9)-
(11) and (14); and finally, we define the N-types’ reply function:

G(eN) ≡
αNASNA − αNBSNB

αNASNA + αNBSNB

,

where the surplus (S) and match probability (α) terms have the optimal choices substituted.
This function measures the relative benefit to an individual N-type from choosing the A-market
over the B-market, assuming a proportion eN of all other N-type agents enters the A-market,
and all other decisions are conditionally optimal. To make it easier to visualize, G is scaled to
lie between −1 and +1. A value of eN is part of an “interior” equilibrium if eN ∈ (0, 1) and
G(eN) = 0, or a “corner” equilibrium if eN = 0 and G(0) ≤ 0 or eN = 1 and G(1) ≥ 0.

Proposition 1. The following types of equilibria exist, and have these properties:

(a) There exists a corner equilibrium where eC = eN = 0; only the B-market is open for trade.

(b) There exists a corner equilibrium where eC = eN = 1; only the A-market is open for trade.

(c) Assume ρ = 0 (CRS) and asset supplies are low enough so that assets are scarce in OTC trade. Then,
limeN→0+G(eN) > 0 > G(0) and limeN→1−G(eN) < 0 < G(1); the corner equilibria are not robust
to small trembles. There exists at least one interior equilibrium which is robust to small trembles.

(d) Assume ρ > 0 (IRS). Then, limeN→0+G(eN) = G(0) < 0 and limeN→1−G(eN) = G(1) > 0; the
corner equilibria now are robust to small trembles. There exists at least one interior equilibrium,
which may or may not be robust to small trembles.

(e) Assume ρ = 0 (CRS) and δA = δB (equal market quality). Then, a symmetric equilibrium exists
where eC = eN = A/(A+B), q0A = q0B and q1A = q1B, and pA = pB.

(f) If, in addition to the assumptions in (e), A = B < D̄/2 (asset supplies are equal and small), i → 0

(low inflation), θδ(1− ℓ) < 0.5 (not-too-high bargaining power for the C-type), and u′′′ ≥ 0 (convex
marginal utility), then G′(0.5) < 0; that is, the symmetric equilibrium is robust to small trembles.

Proof. See Sections D.1-D.3 in the Web Appendix.

In all cases, the C-types’ entry choice eC is optimally adjusting in the background, and it is
generally an increasing function of eN ; when there are many buyers in a market, sellers would
like to go to the same market. Additionally, it must be the case that eC = 0 if and only if eN = 0,
and eC = 1 if and only if eN = 1 (parts (a) and (b) of the proposition). Therefore, the corners are
always equilibria.

These results are depicted in Figure 2, which shows how the reply function G depends on
eN and on asset supplies, given CRS in matching. Dots at G(0) = −1 and G(1) = +1 indicate
that the corners are always equilibria. In the left panel, G is shown for relatively low supplies of
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Figure 2: The reply function G(eN) for CRS (ρ = 0) and varying asset supplies.

A,B, and there is an interior fixed point at eN = 0.5. As shown in part (c) of the Proposition, the
corners are not robust to small trembles, but the interior fixed point is: if a few more N-types
accidentally enter the A-market, individual N -types have an incentive to deviate back to B. In
the middle panel, we show what happens for a higher supply of A: the G-function shifts up
and more agents trade in the A-market, but the equilibrium is still robust.

The right panel illustrates the case where both A and B are high: the G-function shifts back
down, but now it contains a flat segment for intermediate values of eN . This is due to the fact
that with high asset supplies, the aforementioned dilution effect disappears: if the supply of as-
sets is high enough, each individual C-type will be able to achieve q∗ in the DM after they sell
their assets in the OTC (even as the fixed asset supply gets diluted among more C-types). With
the dilution effect out of the picture, a higher eN implies a higher congestion effect in market A
but also a larger measure of C-types in that market (i.e., a higher equilibrium eC). With CRS in
matching these two effects completely offset each other, leading to a flat G-function; or, equiv-
alently, a continuum of equilibria with eC = eN when asset supplies are large enough.

We now move on to the case of IRS in the matching technology, corresponding to part (d)
of Proposition 1. Figure 3 shows the reply function G under ρ = 0.5, an intermediate degree of
IRS. In this case, a high value of eN still implies some congestion among N-types, but this effect
is dominated by the large measure of C-types drawn to market A (precisely because eN is high).
Does that mean that G will be strictly increasing? Not necessarily. Consider for instance the
left panel of the figure, where both asset supplies are small, so that the dilution effect is active.
If eN is large, the typical N-type has a high probability of matching in market A because that
market is flooded with C-types (as well as N-types). But each of those C-types is carrying only
a tiny fraction of the supply of asset A, which was small to begin with. This force discourages
the representative N-type from entering market A, and gives G the non-monotone shape seen
in the left panel of Figure 3. More precisely, that picture shows that there are five equilibria: the
two corners (which are both robust under small errors now), the robust interior equilibrium,
and two non-robust asymmetric equilibria.

What if the supply of asset A was high but that of asset B stayed low? This case is illustrated
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Figure 3: The reply function G(eN) for IRS (ρ = 0.5) and varying asset supplies.

in the middle panel of Figure 3, where one can see that the robust interior equilibrium is now
eliminated. Unless trade was concentrated in the B-corner in the first place, N-types now have
an incentive to migrate to the A-market, C-types will follow, and ultimately all trade will be
in the A-corner. Finally, the right panel depicts the case where both A and B are high. In this
case, the G-function shifts down (compared to the high-A, low-B case), and incentives to trade
in the B-market are restored. However, when both asset supplies are large, the dilution effect
vanishes and the G-function becomes increasing throughout, so the corners are the only robust
equilibria. There does exist an interior equilibrium by continuity, but if it was ever played, a
small shock would drive the agents into one of the corners.

Finally, as part (e) of Proposition 1 shows, the system admits a simple symmetric solution
in one special case which we call “balanced CRS”: there are CRS in OTC market matching
(ρ = 0) and neither asset has an exogenous liquidity advantage (δA = δB).19 And as part (f)
of the Proposition shows, with a few more technical assumptions we can prove that G(eN) is
downward-sloping in a neighborhood of the symmetric equilibrium (as depicted in the left
panel of Figure 2); thus, this particular interior equilibrium is robust.

Beyond the results of Proposition 1, a general analytical characterization is not possible and
most of the analysis which follows will be numerical. (The model can also not be simplified
without losing essential insights.20) Through the rest of Section 3, to keep things simple and

19 We use the word “balanced” to describe the assumption δA = δB . We could also call it “symmetric”, but
we reserve that word for equilibria where all variables indexed by A equal their B-counterparts (e.g., pA = pB).
Even in the balanced environment, there are asymmetric equilibria: the corner equilibria for one, and additional
asymmetric interior equilibria if ρ > 0, as shown in the left panel of Figure 3.

20 We have a core system of six equations, and most of the endogenous variables show up in multiple equa-
tions. Moreover, the equations are non-linear and include kinks, due to the various branches that characterize
the agents’ market entry decisions. One may wonder whether some simplifying assumptions would allow us to
achieve a complete analytical characterization. We believe that the model presented here constitutes the most par-
simonious framework that can capture all the salient features of the question we are studying, hence, any further
simplification would eliminate insights that we think are essential. A few examples may clarify this point. A
simplifying assumption often adopted in these types of models is that the bargaining power of agents is equal to
either 0 or 1. (This is precisely what we assume for the DM, because not many interesting things happen in that
market.) Imposing such an assumption in the OTC would be a bad idea: it would imply that either the C-types
or the N-types get no surplus from OTC trade, which would render their entry decision indeterminate. As we
have explained, the agent’s decision about which market to visit is one of the most important economic forces
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gain some intuition about the economic forces at work, we perform some comparative statics
exercises on the asset supplies and the parameters of OTC microstructure (δA, δB, ρ), maintain-
ing the parameters u(q) = log(q), ℓ = 0.5, θ = 0.5, i = 0.1, and M = 1.

For given parameters, we guess a starting point for eN , then iterate the function G(eN) in
the direction of its sign, until convergence or until reaching a corner. Specifically, we use
e0
N
≡ δAA/(δAA+δBB) as an efficient starting point for iteration; if a robust interior equilibrium

exists, it is likely to involve more entry into the market with a higher matching probability,
and/or higher trading volume. If the corners are not robust, this procedure will always find
an interior equilibrium. On the other hand, a robust interior equilibrium may exist but not be
found if a corner is robust and the starting point is close to it.

3.4 Comparative statics

Now that we understand the structure of possible equilibria, we want to compare asset prices
in these equilibria, and interpret the comparative statics of prices with respect to quantities as
the aggregate demand for these assets. These comparative statics are shown in Figure 4. In all
graphs, the supply of asset A is on the horizontal axis and the supply of B is held fixed and
indicated by a vertical dashed line. We show three cases: first, the simplest case of balanced
CRS (ρ = 0 and δA = δB); second, giving an exogenous advantage to asset A (δA > δB); and
third, without an advantage for either asset but with IRS in matching (ρ > 0). In all three
examples, the graphs in the top row show the net liquidity premia of assets A and B, defined as:

Lj ≡ (1 + i)pj − 1 = ℓ αCj
θ

ω(q1j)
[u′(q1j)− 1] . (17)

The graphs in the bottom row of the figure show the market entry choices eC and eN .
Notice first that some standard results are replicated in our model. First, the liquidity pre-

mium of an asset is zero if that asset is in very large supply, no matter how liquid the market
for that asset is. The reason is that as the asset supply becomes large enough, q1j → q∗, and
thus, u′(q1j) → 1. (One should be careful with terms here: the asset does not “lose” its liquidity
properties in this case, they only become inframarginal. The asset still contributes to the overall
supply of liquidity in the sense that money demand will be lower than it would be if that asset
did not exist.) Furthermore, real balances decrease with inflation so the need to liquidate assets
in the OTC markets becomes stronger with inflation; if the asset supplies are small enough, the
liquidity premium on any liquid asset will rise with inflation, too.

In addition to these standard results, our model also delivers new insights into asset pricing

in our model. As another example, some papers (e.g., Mattesini and Nosal, 2016) gain tractability by assuming
that asset trade takes place only in OTC markets, and the original asset holdings are given to agents in the CM as
endowments, i.e., there is no primary asset market. Clearly, such an assumption here would deprive the model of
one of its most important ingredients, the endogenous determination of asset supply.
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“Balanced CRS” “Unbalanced CRS” “Balanced IRS”
ρ = 0, δA = δB = 1 ρ = 0, δA = 1, δB = 0.9 ρ = 0.25, δA = δB = 1

Figure 4: Net liquidity premia Lj (in %) and entry choices, varying A and holding B fixed
(indicated by a vertical dashed line).

in this environment of segmented OTC markets. Three results stand out. The first is that when
matching in the markets satisfies “balanced CRS” (that is, CRS and neither market having an
exogenous liquidity advantage), there exists a unique interior equilibrium when the asset sup-
plies are not too large. In this equilibrium, eC = eN = A/(A+B), so the ratio of buyers to sellers
is 1 in each market, we have pA = pB, and all the equilibrium quantities and prices only depend
on the sum of the asset supplies, A + B. Thus, the assets turn out to be perfect substitutes in
general equilibrium even though their secondary markets are completely segmented. Part (e)
of Proposition 1 shows this formally, and the leftmost column of Figure 4 illustrates it.

The second result from this section is that exogenous liquidity differences are amplified by
the market entry process, even with CRS. Consider a case where δA > δB, so that OTCA has an
exogenous liquidity advantage. As illustrated in the middle column of Figure 4, both eC and eN

increase, but the latter increases more. To see why, recall that an N-type’s money is good in
either OTC market, therefore these agents only consider the potential trading surplus in the
OTC market when deciding which market to enter. In contrast, C-types can trade only the asset
they have previously chosen to hold, therefore they must weigh the cost of holding either asset
against the benefit of trading in the respective OTC market. Consequently, the entry decision of
N-types is more sensitive to liquidity differences when choosing their market. The end result
is that market tightness from the point of view of asset sellers rises in the more liquid market
and falls in the less liquid one: formally, we observe that the elasticity of the endogenous ratio
αCA/αCB with respect to the exogenous ratio δA/δB is bigger than 1. Crucially, it is the point
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of view of OTC asset sellers that matters for asset pricing at the issue stage; people who buy a
newly issued asset are concerned about the conditions at which they can sell it down the road,
but people who plan to buy the asset later in the secondary market have no influence on the
issue price. As a consequence, even a small divergence of δA and δB will drive a larger wedge
between the liquidity premia on the two assets. We view this result as Step 1 of an explanation
why two assets with otherwise similar features can have big differences in their liquidity – most
prominently, of course, U.S. Treasuries compared to equally safe corporate or municipal bonds.

The third result from this section is that IRS in matching encourage market concentration,
i.e., corner equilibria. This is illustrated in the rightmost column of Figure 4. Near the origin,
we have a case of A ≪ B, so asset A is barely traded in OTC markets (though not entirely absent
due to the fact that ownership of asset B is much more diluted). As the supply of A increases,
more agents are willing to trade it in the OTC market because of the increase in potential trad-
ing surplus; and crucially, N-types are more sensitive to this increase, so the ratio eN/eC rises
as A increases. This is important because again, it means that asset A becomes rapidly more
attractive to C-types through two channels (market tightness and IRS).21 As asset demand in
the CM by future C-types determines the issue price, the resulting increase in liquidity is so
strong that it makes the price of asset A upward sloping in its supply – at least, until that sup-
ply is so large that the force of diminishing marginal utility takes over.22 But we are not done.
When the supply of A becomes even larger, all OTC trade becomes concentrated in the market
for A, and asset B ceases to be liquid at all. As this happens, the price of asset A jumps upward
discontinuously; later, we will see that this effect of increasing returns provides a powerful in-
centive to the issuer of an asset to issue up to the point where competing assets are driven out
of secondary markets.

This result is Step 2 of our explanation why two assets with otherwise similar features can
have big differences in their liquidity. Even with a modest degree of IRS in matching, an asset
in smaller supply is likely to be significantly less liquid than one which is in larger supply, as
agents prefer to enter the market where gains from trade are larger, and through their own entry
help to make this market “thick”. And consider how this would interact with the first step de-
scribed above: even with a small exogenous difference in market efficiency, the disadvantaged
market is likely to see significantly less entry, and thereby becomes very “thin” indeed.23 In

21 To be precise: with IRS and δA = δB , we observe eC < eN in the interior if and only if A < B. The more
plentiful asset is more liquid.

22 Weill (2008) has a result of similar flavor: he studies an extension of Duffie et al. (2005) with multiple assets,
keeping the aggregate supply of tradable assets constant but allowing some assets to be in larger supply than
others. He finds that the more plentiful assets are easier to find and have a higher price.

23 Interpreting market A as the market for U.S. Treasuries, there is an additional element that may add to this
market’s liquidity: the Federal Reserve (Fed) often participates in this market by selling or buying large quantities
of assets. For instance, in the period between November 2008 and September 2011, the Fed purchased $1.19
Trillion of Treasury debt, as part of a program now known as quantitative easing (QE). While our paper does
not explicitly model interventions of the Fed in the financial markets, in the form of open market operations
or QE, it is reasonable to expect that the presence of a big player such as the Fed in that market will be a pole
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the next section, we calibrate our model to quantitatively assess the power of this amplification
mechanism.

4 Quantitative analysis

4.1 Calibration

We calibrate the model to the Treasury bonds and AAA/AA corporate bonds markets and test
whether the calibrated model can quantitatively match the observed spread between Treasuries
and (the weighted average of) AAA/AA corporate bond yields.24 More precisely, we feed
the model with data on Treasury and corporate bond supplies, and examine the exogenous
liquidity differential in OTC market efficiency that would allow the model to perfectly match
the data.

For the utility function, we use u(q) = q1−σ/(1 − σ). Thus, we need to calibrate ten param-
eters: the supplies of the Treasury bonds, the AAA/AA corporate bonds, and the money stock
(A, B, and M ), the nominal interest rate on an illiquid bond (i = (1+µ−β)/β, which subsumes
time preference and expected inflation), the elasticity of marginal utility (σ), the fraction of C-
type agents (ℓ), the relative bargaining power of C-types (θ), the degree of returns to scale in the
OTC matching function (ρ), and the matching efficiency in the two OTC markets (δA and δB).

Some of these parameters have straightforward empirical targets, while others do not. For
the latter, we show what combinations of parameters are required in order to exactly match the
yield spreads observed in the data.

First, for the Treasury bond supply (A) and the AAA/AA corporate bond supply (B), we
use the data from the report by S&P Global on the U.S. corporate debt market as of January
2019 (S&P Global, 2019); this is the only data on the outstanding amount of corporate bonds we
could find. For M , we use the MZM monetary aggregate (from FRED). We divide the Treasury
and corporate bond supplies by the money stock to obtain 0.1390 of Treasury supply and 0.0313
of corporate bond supply, relative to a normalized M = 1. For i, we cannot use any observed
interest rate since no traded asset is perfectly illiquid; instead, we use an estimate of 7%/year
based on time preference, expected real growth, and expected inflation (Herrenbrueck, 2019b).
We set ℓ = 0.5 for symmetry (equal numbers of potential buyers and sellers in the secondary

of attraction for other investors, too: if I want to sell assets in the secondary market (like the C-types in our
model) and I know that someone is purchasing billions worth of asset A in OTCA, why would I go anywhere
else? Readers who are interested in how one could model direct interventions of the Fed in financial markets in a
similar framework are referred to Herrenbrueck (2019a) and Geromichalos and Herrenbrueck (2022). For a careful
empirical characterization of the effects of QE, see Song and Zhu (2018).

24 One could argue that only AAA corporate bonds are default-free and, therefore, comparable to Treasuries
with respect to their risk component. However, the supply of AAA corporate bonds has decreased so dramatically
in the last decade that any reasonable calibration including only those assets in the role of “asset B” would imply
that no agent ever chooses to visit OTCB . To avoid this trivial result, we choose to interpret asset B as the class of
“very safe” corporate bonds, and this certainly includes AA as well.
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Description Value

A supply of Treasury bonds 0.1390
B supply of AAA/AA corporate bonds 0.0313
M money supply 1
i nominal interest rate on an illiquid bond (yearly) 7%
ℓ fraction of C-type agents 0.5
σ elasticity of marginal utility 0.34
θ relative bargaining power of C-types See Table 2
ρ elasticity of the OTC matching function See Table 2
δA matching efficiency in the OTC market for Treasuries 1
δB matching efficiency in the OTC market for corporate bonds See Table 2

Table 1: Key parameter values.

asset markets). Next, we follow the procedure of Rocheteau, Wright, and Zhang (2018) (where
to be consistent with the rest of our calibration, we use MZM as the monetary aggregate) and
set σ = 0.34 to match the slope of the empirical U.S. money demand function. For the matching
efficiency in the OTC market for Treasuries (δA), we normalize it to 1, so that we can interpret
values of δB smaller than 1 as the exogenous liquidity disadvantage for corporate bonds. A
summary of the calibrated parameter values can be found in Table 1.

This leaves us with three parameters – the bargaining power (θ), the scale elasticity (ρ), and
the matching efficiency in the OTC market for corporate bonds (δB) – which have no direct
counterparts in the data. We consider a number of combinations of θ, ρ, and for each combi-
nation, we ask what δB should be equal to so that our model can perfectly match the yield
differentials observed in the data. For ρ, as we will see soon, some amount of IRS will lower
the burden on other parameters for the model to match the data, but ρ does not have to be
particularly high. Indeed, if ρ is too high, then one of the assets will attract all secondary asset
market trade, and the other one will be completely illiquid, a result which would be counter-
factual. Thus, all the values of ρ we consider are in the neighborhood of the CRS case (between 0
and 0.03).

For the target, the yield differential between Treasuries and AAA/AA corporate bonds,
we restrict attention to the period from 2018 to 2020.25 We calculate this target as the difference
between the average of the market yields on U.S. Treasury securities at 20- and 30-year constant
maturities from FRED (GS20 and GS30) and the weight average of AAA and AA corporate bond
yields from the ICE BofA AAA and AA US Corporate Index (C0A1 and C0A2).

25 While the data on Treasury bond supply is available for every year, we only have data for the corporate bond
supply in 2019. Since this data limitation forces us to focus on a period around 2019, we choose to calculate the
yield differential for the period 2018 to 2020. However, our results are robust to expanding the period over which
this yield differential is calculated.
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ρ = 0 ρ = 0.01 ρ = 0.02 ρ = 0.03

θ = 0.1 — — — —
θ = 0.2 0.5251 0.5367 0.5485 0.5606

θ = 0.3 0.7122 0.7254 0.7388 0.7525

θ = 0.4 0.7995 0.8133 0.8274 0.8417

θ = 0.5 0.8507 0.8649 0.8793 0.8939

θ = 0.6 0.8848 0.8992 0.9138 0.9287

θ = 0.7 0.9094 0.9239 0.9387 0.9537

θ = 0.8 0.9282 0.9428 0.9577 0.9728

θ = 0.9 0.9434 0.9581 0.9731 0.9883

Table 2: Values for δB, given θ and ρ, in an exact match of our model to the data.

Table 2 presents the results. Each cell of the table shows the value of δB that is needed
to exactly match the observed spread in the data, given the values of θ and ρ. For a given
θ, a higher ρ implies a higher δB; that is, with a higher degree of IRS, a smaller amount of
exogenous liquidity disadvantage is needed to match the data. Similarly, for a given ρ, a higher
θ implies a higher δB; that is, with a higher bargaining power for asset sellers, a smaller amount
of exogenous liquidity disadvantage is needed to match the data. However, notice that if θ is
very small, e.g., 0.1, there is no value of δB that would allow the model to match the data. This
is because in our model agents are willing to pay a (high) liquidity premium, if they expect to
sell the asset “down the road”. The price at which they can sell depends positively on θ, thus,
the channels highlighted by our model are stronger for greater values of that parameter.26 Of
course, we exclude θ = 1 so that asset buyers have a meaningful market entry decision.

Overall, the results show that our model needs minimal degrees of scale elasticity and a liq-
uidity disadvantage for corporate bonds to match the data. For example, when the bargaining
power is 0.8, a model with the scale elasticity of 0 (which corresponds the constant-returns-to-
scale case) implies 0.93 for the matching efficiency in the corporate bonds secondary market.
Thus, even if we completely shut down the IRS channel, our model requires the matching tech-
nology in the corporate bonds market to be just 7% less efficient than the one in the Treasury
market to perfectly match the data. As expected, if we allow for a positive value of the scale
elasticity, ρ, the exogenous liquidity differentials that are required to match the data decrease
even further. For instance, if ρ = 0.01, the implied value for the matching efficiency for the
corporate bonds secondary market becomes 0.94. For a scale elasticity of 0.02, that number be-
comes 0.96. Thus, our model does not need an unreasonably high value of scale elasticity to
explain the data; in fact, it is virtually in the neighborhood of CRS.27

26 Importantly, a high value of θ does not give one of the assets a relative advantage, since a higher θ scales
liquidity premia of both assets proportionally (see Equation 17).

27 For context, most theoretical finance papers use a congestion-free matching function with scale elasticity
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4.2 Evaluating the contribution of each channel of the model

The discussion so far reveals that there are three channels delivering the main results of the
analysis: endogenous entry in the OTC markets, exogenous liquidity differences (δB), and in-
creasing returns to scale (ρ). The goal of this section is to quantitatively determine the individ-
ual contribution of each of those channels. To that end, we build on the calibration from Sec-
tion 4.1, and we ask how much explanatory power we would lose if we were to shut down each
of those channels one at a time. The results of this exercise are illustrated in Tables 3, 4, and 5.
All of those tables remind the reader what δB should be, for any given combination of (θ, ρ), for
our model to perfectly match the data.

Table 3 reports how much explanatory power our model loses, for the various parameter
specifications, if instead of allowing agents to enter OTC markets optimally, we assumed that
the measure of agents entering each market is held in constant proportion to the supply of
the respective asset. Specifically, we assume A/eC = B/(1 − eC) and A/eN = B/(1 − eN), so
that eC = eN = A/(A + B). To illustrate the results of the exercise, suppose that θ = 0.7

and ρ = 0.02 (so that with δB = 0.9387 our model perfectly matches the data). If one was to
shut down the endogenous entry decision of the agents, our model would not able to explain
48% of the yield differential in the data, which is to say that this channel is responsible for 48%
of the model’s explanatory power (for the given set of parameters). Note that the importance
of this channel is quite stable across the different combinations of (θ, ρ, δB) that fit the data and
roughly equal to 50%.

Table 4 illustrates the importance of exogenous liquidity differences. The reported numbers
illustrate the loss of explanatory power if one assumes that δB equals 1, as opposed to the value
that would perfectly match the data. As an example, consider again θ = 0.7 and ρ = 0.02.
Our result suggests that eliminating exogenous liquidity differences (i.e., assuming δB = 1

rather than 0.9387) would result in losing 66% of the model’s explanatory power. Notice that
with ρ = 0 (and δB = 1) we are in the “balanced CRS” case, where our theory predicts that
both assets should be priced equally, in other words, our model cannot explain any of the yield
differentials in the data. Also, note that for a given θ, increasing ρ results in a smaller loss
of explanatory power. This is because, as discussed Section 4.1, higher exogenous liquidity
differences and higher scale elasticity work as substitutes.

Table 5 highlights the contribution of the IRS channel of our analysis. The percentages re-
ported in this table represent the loss of explanatory power, if one assumes that ρ equals 0 (CRS),
as opposed to the value that would perfectly match the data. For instance, suppose that θ = 0.7.
The analysis in Section 4.1 reveals that with ρ = 0.02 and δB = 0.9387 our model perfectly fits
the data. The table shows that removing IRS, i.e., setting ρ = 0, while leaving the other param-
eters unchanged, would imply a 31% loss of the model’s ability to match the data. Naturally,

ρ = 1; see for example Duffie et al. (2005) and Vayanos and Wang (2007).

25



ρ = 0 ρ = 0.01 ρ = 0.02 ρ = 0.03

θ = 0.3
δB = 0.7122 δB = 0.7254 δB = 0.7388 δB = 0.7525

42% 43% 44% 44%

θ = 0.5
δB = 0.8507 δB = 0.8649 δB = 0.8793 δB = 0.8939

44% 45% 46% 46%

θ = 0.7
δB = 0.9094 δB = 0.9239 δB = 0.9387 δB = 0.9537

47% 48% 48% 49%

θ = 0.9
δB = 0.9434 δB = 0.9581 δB = 0.9731 δB = 0.9883

52% 53% 53% 54%

Table 3: Percentage unexplainable without endogenous market participation (eC = eN =A/(A+
B) versus optimal eC, eN).

ρ = 0 ρ = 0.01 ρ = 0.02 ρ = 0.03

θ = 0.3
δB = 0.7122 δB = 0.7254 δB = 0.7388 δB = 0.7525

100% 94% 89% 83%

θ = 0.5
δB = 0.8507 δB = 0.8649 δB = 0.8793 δB = 0.8939

100% 90% 79% 69%

θ = 0.7
δB = 0.9094 δB = 0.9239 δB = 0.9387 δB = 0.9537

100% 83% 66% 49%

θ = 0.9
δB = 0.9434 δB = 0.9581 δB = 0.9731 δB = 0.9883

100% 73% 46% 20%

Table 4: Percentage unexplainable without exogenous liquidity difference (δB = 1 versus δB as
shown in the table).

ρ = 0 ρ = 0.01 ρ = 0.02 ρ = 0.03

θ = 0.3
δB = 0.7122 δB = 0.7254 δB = 0.7388 δB = 0.7525

0% 4% 9% 13%

θ = 0.5
δB = 0.8507 δB = 0.8649 δB = 0.8793 δB = 0.8939

0% 9% 18% 28%

θ = 0.7
δB = 0.9094 δB = 0.9239 δB = 0.9387 δB = 0.9537

0% 15% 31% 48%

θ = 0.9
δB = 0.9434 δB = 0.9581 δB = 0.9731 δB = 0.9883

0% 25% 51% 78%

Table 5: Percentage unexplainable without IRS (ρ = 0 versus ρ as shown in the table).
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all the numbers in the first column of the table are 0’s since that calibration was based on the
assumption that ρ = 0. Another thing to note is that in the first row of the table (for θ = 0.3),
shutting down the IRS channel does not take away too much explanatory power. This is be-
cause for such a low value of θ, most of the model’s explanatory power stems from the low
values of δB, which in our current exercise remain unchanged.

4.3 Implications of consolidating secondary markets

The secondary marketplace for corporate bonds is often believed to be quite segmented. An
interesting report by BlackRock (2014) provides evidence in support of this belief, and sug-
gests that consolidating the secondary asset markets for different classes of corporate bonds
would be beneficial for the issuers. Our model confirms this conjecture, because it predicts
that consolidating the segmented secondary markets will increase secondary market liquidity,
and, thus, lower the rate at which these corporations can borrow funds. More importantly, our
model can be used to quantitatively assess the size of these benefits. To that end, we use the
calibrated model in Section 4.1, but we adjust it to include three assets, asset A, asset B1, and
asset B2, interpreting asset B1 as AAA corporate bonds and asset B2 as AA corporate bonds.
(Per usual, asset A is interpreted as Treasury bonds). We then perform the following counter-
factual exercise: we ask what the gains in terms of higher liquidity premia (or, equivalently,
lower borrowing rates) would be from consolidating the secondary asset markets for AAA and
AA corporate bonds. The model with three assets and three secondary markets is described in
detail in Appendix B.2.

The main results of our quantitative exercise are summarized in Table 6.28 We can see that,
based on our calibration, before the secondary market consolidation AAA corporate bonds (as-
set B1) do not enjoy any liquidity premium. This is because their asset supply is so small, and
the benefit of trading that asset in a segmented market is so limited, that no agents choose to
visit OTCB1 . AA corporate bonds (asset B2) enjoy a liquidity premium, but, of course, that
premium is lower than the one for Treasury bonds (asset A). Consolidating OTCB1 and OTCB2

implies that both of these assets will now enjoy the same, and higher liquidity premium, equal
to 1.4014%. However, the lion’s share of the benefit obtained by the market consolidation is
enjoyed by the issuers of AAA corporate bonds, who suffered disproportionately from the mar-
ket segmentation, due to the extremely low supply of this asset (see Footnote 28). Overall, the

28 Three clarifications are in order regarding this quantitative exercise. First, in the baseline exercise we saw
that the supply of asset B was 0.0313, and that included both AAA and AA corporate bonds. Here we break this
into the supply of asset B1 = 0.0051 (AAA) and B2 = 0.0262 (AA). Note that the supply of AA bonds is roughly
five times greater than the supply of AAA. Second, even though we know from section 4.1 that our model can
match the data for various values of θ and ρ, for this exercise we focus on θ = 0.7 and ρ = 0.03. Regarding our
choice of θ, we have already argued that our model performs better for higher values of that parameter. Regarding
the choice of ρ, we choose a relatively high value because our exercise, i.e., evaluate the gains from consolidating
the secondary asset markets, is more meaningful in the presence of some IRS. Third, even when the secondary
markets for assets B1 and B2 are segmented, the matching efficiency in both markets is common, and given by δB .
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Parameters ρ = 0.03 θ = 0.7 δB = 0.9537

Liquidity premia, Asset A Asset B1 Asset B2

before consolidation 1.7576% 0% 1.4001%

after consolidation 1.7414% 1.4014% 1.4014%

Changes in liquidity premia −0.0162%− 1.4014% 0.0013%

Table 6: Impact of consolidating secondary asset markets on liquidity premia.

consolidation of the corporate bonds secondary markets attracts more agents into that market,
leading to an endogenous decrease in the liquidity (premium) of Treasury bonds.

5 Microfoundations: market segmentation

One of the crucial assumptions of our model is that the secondary markets for assets A and
B are segmented, and that agents can visit only one market per period. The first assumption
is certainly empirically relevant, as we discuss in Appendix A. The second assumption is not
meant to be taken literally, and only intends to capture the idea that trading a particular type of
assets is costly, and agents will visit more frequently the secondary market where they expect to
find the best trading terms. While we choose to maintain this assumption in the baseline model
for tractability purposes, in this section we show that the limited participation assumption can
arise endogenously as a result of a more general model, where agents have the option to trade
both assets in the secondary market.

To that end, we consider an environment with two distinct secondary “marketplaces”.29

In one of the marketplaces, there is a consolidated secondary market where agents can trade
both assets, A and B. Agents can choose to pay a fee κ2 and access this market. In the other
marketplace, there are two segmented sub-markets, just like in the original version of our paper.
Agents pay a fee κ1 to access this marketplace, and, once they enter, they must choose which
of the two sub-markets to go to (either the one for asset A or the one for asset B). Within any
market or submarket, matching takes place according to the usual matching function described
in the original version of the paper. This version of the model captures the idea that if agents
want to, they should be able to avoid the limited participation imposed in the baseline model.
(This exercise is similar in spirit to Geromichalos et al. (2018).)

The details and solution of the model can be found in Appendix B.3, and the findings are
presented in Figure 5. Our analysis implies that there exist two robust corner equilibria; one
where all agents concentrate in the consolidated marketplace, and one where all agents con-

29 In this extended model, there is still only a single primary asset market (the CM) where all agents and assets
trade. In particular, this means that the allocation of money or assets to either of the two secondary “marketplaces”
is completely unrestricted.
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“CRS” “IRS”
ρ = 0, θ = 0.7, δB = 0.9094 ρ = 0.03, θ = 0.7, δB = 0.9537

Figure 5: The typical agent’s surplus from visiting the segmented marketplace (S1, defined in
(B.40)) and the consolidated marketplace (S2, defined in (B.41)) as a function of the fraction of
agents visiting the consolidated marketplace (e2).

centrate in the segmented marketplace. Of course, the latter coincides with the equilibrium
described in our baseline model, where segmentation was imposed as an assumption. One
should notice that this analysis has abstracted from the entry fees κ1, κ2. In other words, we
have established that even if κ1 = κ2, having all agents concentrate in the segmented market-
place is a robust equilibrium of the model. However, if we interpret the κ terms as costs of
evaluating assets traded in the various secondary markets, it is reasonable to assume that κ2

should be larger than κ1. If that was the case, it is theoretically possible that concentrating in
the segmented marketplace becomes the unique robust equilibrium of the model.

6 The economy with strategically chosen asset supply

So far the analysis has assumed that asset supplies are exogenously given. The goal of this
section is to highlight that allowing for an endogenous determination of asset supplies offers
important economic insights that are complementary to the analysis with exogenous asset sup-
plies. To that end, we study the non-cooperative duopoly game between issuers of asset A and
B, who realize that the OTC market microstructure (δA, δB, ρ) and the entry decisions of agents
(i.e., the equilibrium of the ‘subgame’ described in Section 3.1) determine the demand for their
assets. In Appendix A, we provide some justification for treating the issuers of these two as-
sets as strategic players, whose decisions can affect market outcomes. However, this particular
market structure is clearly not meant to be taken literally; in the real world there are multiple
asset issuers, and each of them has a different degree of market power. Rather than developing
an intractable model that attempts to incorporate all these details, we present the solution to a
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simpler model, which allows the reader to extrapolate what kind of outcomes one might obtain
under their preferred market structure.30

6.1 The game between the asset issuers

We look at the non-cooperative game between two issuers who seek to maximize their utility.
They live only in the CM, where they can work, consume, and issue assets. Their utility within
the period is Y(X,H) = X − H , where X,H denote consumption and work effort, and they
discount the future by the same factor β as all agents. They take into account that the real price
at which they can sell their asset, φpj , depends on the supplies of both assets. For example, the
problem of issuer A who has issued A− assets in the previous period can be described by the
following Bellman equation:

WA(A−) = max
X,H,A

{
X −H + βWA(A)

}
s.t. X + φA− = H + φpAA,

which we can simplify to yield:

WA(A−) = −φA− +max
A

{
φpAA+ βWA(A)

}
.

Just like for private agents, the issuer’s choice of A does not depend on their previous choices.
We can use this, plus the fact that in steady state φ/φ̂ = (1+µ), to solve for issuer A’s objective:

JA =
φ

1 + i
[(1 + i)pA − 1]A

=
φ

1 + i

(
ℓ αCA

θ

ω(q1A)
[u′(q1A)− 1]

)
A. (18)

With an analogous derivation, issuer B’s objective is:

JB =
φ

1 + i

(
ℓ αCB

θ

ω(q1B)
[u′(q1B)− 1]

)
B. (19)

Simply put, each issuer seeks to maximize the product of the net liquidity premium Lj and the
supply of their asset, taking into account that their choice of asset supply affects the general
equilibrium choices of the agents.

30 As one example, one may argue that political agents for whom liquidity rent is not the only consideration,
such as the U.S. Treasury, are not Nash players but are able to precommit. We do explore this possibility in the Web
Appendix: first, a “semi-strategic” case where the supply of A is set non-strategically, and issuer B best-responds
to it; second, a Stackelberg duopoly where issuer A moves first and precommits to a (typically, large) issue size
before B best-responds. And if we take the repeated interaction between the issuers seriously, there are even more
possibilities, but they go beyond the scope of our paper.
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Figure 6: Payoffs as functions of asset supplies, with CRS (ρ = 0) and asset A having an exoge-
nous liquidity advantage over asset B (δB ≤ δA = 1). Darker-shade cells indicate larger payoffs,
and white indicates zero. The circle and diamond points indicate particular Nash equilibria.

6.2 Strategic structure of the game

As before, we begin with the simplest case: “balanced CRS” in financial markets (ρ = 0 and δA =

δB). As we saw in Proposition 1 above, the two corner equilibria are not robust to small errors;
consequently, the interior equilibrium defined in part (e) of the proposition is the interesting
one to study here. In this equilibrium, liquidity premia are positive, equal (LA = LB > 0), and
depend only on the sum A+B: the assets are perfect substitutes and are priced along a common
demand curve. And because the assets are perfect substitutes, the only Nash equilibrium of the
game between the issuers is the symmetric Cournot equilibrium where both assets are issued
in the same quantity, each approximately one-third of the quantity D̄ that would drive the
liquidity premium to zero.

Next, we are interested in the effects of exogenous liquidity differences. Specifically, we
set δA equal to 1 and let δB vary, while maintaining CRS. For this discussion, we set θ = 0.7;
the remaining parameters are equal to the ones discussed in the calibration of the model (Sec-
tion 4.1). Figure 6 illustrates the results: the leftmost column shows the balanced CRS case, and
the rightmost column confirms that if B has too much of a disadvantage, the interior equilib-
rium ceases to exist and all OTC trade is in the A-market. Issuer A gets to issue the monopoly
quantity, approximately one-half of D̄, and issuer B issues an arbitrary amount because asset
B is illiquid in any case.

The intermediate values of δB, where the B-market is only a little bit worse than the A-
market, show the transition. As we had already seen in Figure 4 (middle column), the demand
curve for asset A has a kink whenever δB is less than δA. As long as δB is close enough, the
Cournot-style interior equilibrium survives. When δB becomes too small, however, A prefers
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Figure 7: Payoffs as functions of asset supplies, with IRS but no exogenous liquidity advantage
(δA = δB = 1). Darker-shade cells indicate larger payoffs, and white indicates zero. The circle
and diamond points indicate particular Nash equilibria.

to jump to a very large quantity that concentrates OTC trade in the A-market and drives B’s
liquidity premium to zero – even at the expense of a low liquidity premium for A itself. We will
analyze the consequences for the economy in more detail later, but we can already see that the
total supply of liquid assets is largest if B is somewhat illiquid, smallest if B is very illiquid,
and in between if both A and B are very liquid.

To summarize: with CRS in financial markets, the structure of the game resembles Cournot
competition. If not too unbalanced, CRS promotes the interior equilibrium in OTC markets
where every asset is somewhat liquid. As a result, we see relatively small issue sizes.

Finally, we look at how the issuers’ incentives are affected by IRS in financial markets.
Specifically, we set δA = δB = 1 and let ρ vary. These results are illustrated in Figure 7; the
leftmost column repeats the balanced CRS case from the previous figure, and the rightmost
column illustrates how a strong degree of IRS makes the symmetric interior entry equilibrium
so unstable that it is never reached as the subgame of the issuers’ game. Why? Let us go back
to Figure 3. Suppose that asset supplies are small and the interior entry equilibrium is played
– i.e., both OTC markets are active. Issuer A has a strong incentive to supply more: yes, this
moves her down her own demand curve (reducing her profits), but at the same time, the bigger
surpluses in the A-market attract so many traders that the B-market shuts down (increasing A’s
profits). Of course, B has a symmetric incentive. With IRS, traders prefer to concentrate in one
market, so the reward to issuers of offering a bigger trading surplus than their competitor be-
comes enormous.31 Consequently, there is a Nash equilibrium (of the discretized model) where
quantity A is so close to D̄ that issuer B does not find it profitable to issue any more, because

31 Recall: when computing corner equilibria, we made the tie-breaking assumption that traders are more likely
to pick the corner of the asset of which there is a larger supply. See the discussion at the end of Section 3.3.
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their asset would trade at a zero liquidity premium, either due to being illiquid or due to being
plentiful. And there is a mirror Nash equilibrium with A and B’s roles reversed, which is what
the two dots in the top right corner of Figure 7 indicate.

For intermediate values of ρ, we see a smooth transformation of the playing field. For low
ρ, assets tend to be strategic substitutes where issuers prefer to issue neither too little nor too
much, but for high ρ, assets become strategic complements where issuers strongly prefer to
issue more than the other. Crucially, the fact that the playing field changes smoothly does not
mean that the Nash equilibria change smoothly. On the contrary: as ρ increases, we get a
jump transition from Cournot-type equilibria of low issue sizes and both assets being liquid to
asymmetric equilibria of high issue sizes and only one asset being liquid. Note that the critical
amount of IRS is approximately ρ = 0.01 – not particularly large – because it is the competition
between issuers that gives a small amount of IRS a big endogenous ‘kick’.

We can say that with enough IRS in financial markets, despite being a game in quantities
rather than prices, the strategic structure of the game resembles Bertrand competition rather than
Cournot. This promotes corner equilibria, where one asset ends up being very liquid and the
other one not liquid at all. As long as there are no exogenous differences in market quality
(δA ≈ δB), in such equilibria the ‘winning’, liquid asset must be in large supply (close to D̄).

6.3 Comparative statics

In this section, we analyze the comparative statics with respect to δB of the static Nash equi-
libria of the issuers’ game. We consider both constant returns in matching and small amounts
of increasing returns. Our goal is to understand what happens if one of the assets (A for con-
creteness) has an exogenous matching advantage, and how the answer to this question interacts
with the returns to scale in matching. Throughout this section, we hold δA = 1 fixed.32

The case of CRS is illustrated in Figure 8. As δB declines slightly from 1 (the balanced case),
A begins to issue more and B begins to issue less (panel [a]), but the strategic pattern of a
Cournot game is maintained. The exogenous liquidity advantage of asset A is magnified by the
entry choices of agents (panel [d]), which feeds back into a rising liquidity premium on asset A
and a falling liquidity premium on asset B (panel [b]). Outputs diverge: C-types who hold as-
set A end up purchasing smaller quantities q0A and q1A, but the probability that they will obtain
the larger one of the two, q1A, increases. Conversely, C-types who still hold asset B despite its
liquidity disadvantage are compensated with higher quantities q0B and q1B (panel [c]).

32 One detail to be aware of is how we compute the Nash equilibria. We iterate best responses of the two issuers
on a finite grid of possible asset supplies which excludes asset supplies which we know can never give positive
payoffs: zero and supplies exceeding D̄. The starting point is the smallest positive asset supply on the grid (e.g.,
the point (0.05D̄, 0.05D̄) on a 20×20-grid). The remaining choice is whether we let A or B move first. In this
section, all equilibria are computed with A moving first; the equilibria where B moves first are usually identical,
payoff-identical, or mirror images. In Figures 6 and 7, Nash Equilibria where A moves first are indicated with a
circle point, and those where B moves first are indicated with a diamond point.
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Figure 8: Comparative statics of the strategic equilibria with respect to δB, with CRS (ρ = 0).

As δB declines further, we observe a discontinuity. At some point, the benefit to A from
ramping up the issue size all the way to drive out B from the financial markets becomes too
strong, so this is what A does. Asset B becomes fully illiquid, and therefore its issue size and
the quantities q0B and q1B become indeterminate. As a result of this aggressive competition,
average output of DM goods is highest at the discontinuity. If δB declines even more, the threat
of trading asset B gradually diminishes; eventually, A becomes a monopolist who issues an
intermediate quantity of asset A and average output declines to its lowest value. (Welfare is a
more complicated story, as we explain in Section 6.4 below.)

When we allow for a very small degree of IRS in matching, ρ = 0.002 (illustrated in Figure 9),
the results are almost identical to those with CRS, as one might expect given that ρ is so close to
zero. Even so, we can see that the transition from the interior equilibrium to the A-corner where
asset B is illiquid happens ‘sooner’, i.e., for a higher value of δB, than under CRS. Increasing
returns make it slightly easier for A to drive B out of the market: in the example, A will do so
for δB = 0.92 under ρ = 0.002 but not under ρ = 0.

Based on Figure 7, one would guess that when increasing returns are strong enough, the
Cournot-style equilibrium is eliminated in favor of aggressive competition for secondary mar-
ket liquidity. But how strong do they need to be? Our perhaps surprising answer is: not very.
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Figure 9: Comparative statics with respect to δB, with just the tiniest bit of IRS (ρ = 0.002).

As Figure 10 illustrates, the transition occurs already for ρ < 0.01. Even with ρ = 0.01, a tiny
degree of IRS, issuer competition is fierce and for any value of δB, only one asset ends up being
liquid. However, this does not mean that δB stops mattering. When δB = δA = 1, an issuer
who wishes to capture the secondary market must issue the quantity D̄, which also drives her
own payoff to zero. But as δB declines, so does the threat of B’s competition, and therefore A’s
issuance is negatively related to her strategic advantage δA/δB.

While our model abstracts from a number of factors that are certainly influencing the bor-
rowing decisions of the real-world issuers (the U.S. Treasury, large corporations, etc.), our the-
ory generates solutions that resemble patterns in real-world asset markets. For instance, Fig-
ures 8 and 9 illustrate how even a small disadvantage of market B manifests itself as a higher
matching probability for sellers of asset A (panel [d]), hence a larger liquidity premium for asset
A (panel [b]), and how this mechanism is reinforced by issuer B’s decision to scale back their
issue size (panel [a]). The question whether the Treasury should be considered a strategic agent
is interesting but not dispositive. In the Web Appendix, we consider a “semi-strategic” model
where issuer B is strategic but issuer A is not. We show that the implications – at least, as far as
issuer B is concerned – are broadly the same.
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Figure 10: Comparative statics with respect to δB, with a little bit more IRS (ρ = 0.01).

6.4 The relationship between asset supplies, output, and welfare

We define social welfare W to be the total surplus across all DM trades, as follows:

W ≡ ℓeC

(
(1− αCA) [u(q0A)− q0A] + αCA [u(q1A)− q1A]

)
. . . (20)

+ ℓ(1− eC)
(
(1− αCB) [u(q0B)− q0B] + αCB [u(q1B)− q1B]

)
.

In monetary models of this kind, there is no general relationship between the supply of liquid
assets and output or welfare. For example, consider the corner equilibrium where only the OTC
market for asset A is open (or assume for a moment that A is the only asset). Applying a recent
result by Herrenbrueck and Geromichalos (2017) and Huber and Kim (2017), it can be shown
that welfare is a decreasing function of the asset supply in a neighborhood (Ā − ϵ, Ā). Why?
First, note that as A increases (but is still below Ā), q0A falls and (q1A, q̃1A) rise, so the effect on
average output is ambiguous and depends on parameters. However, the welfare impacts of
these changes are weighted by the marginal utility term u′(q)− 1. If A is close to Ā, then u′(q1A)

is close to u′(q∗) = 1; thus, the welfare gain which successful traders receive from higher A

vanishes, but the welfare loss of unsuccessful traders does not, and the overall welfare effect is
negative. This is confirmed by combining panels [a] and [c] of Figure 10, showing increasing
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Figure 11: Welfare as a function of δB, measured as equivalent CM consumption, in percent
deviations from the first-best.

asset supply and output near Ā, with panel [c] of Figure 11, which shows the drop in welfare.
Next, we are interested in the relationship between market microstructure and welfare.

First, using the fact that an asset supply close to D̄ is always ‘too much’ from a welfare per-
spective, we argue that any condition that leads to aggressive competition among the asset
issuers is best avoided. In particular, the general intuition that the more competition, the better
for social welfare, is not valid when it comes to liquid assets. The same reasoning would apply
when matching is CRS and we compare a Cournot oligopoly of few versus many competitors.

Second, there is less clarity when we are far from the aggressive “everyone issues D̄” case.
For our paremetrization, a Cournot duopoly is better for welfare than a monopoly, so it is also
possible to have too little competition. But the exact turning point will depend on details.

Third, and perhaps surprisingly, the effect of the exogenous ‘market quality’ parameter δB
on welfare is not monotonic. In fact, for IRS and δB ≈ δA, the effect is negative, because sim-
ilarity promotes aggressive competition. For CRS, we have shown that δB ≪ δA promotes a
monopoly and δB ≈ δA promotes a duopoly, but it is intermediate values of δB that promote the
most aggressive competition, the largest supply of liquid assets, and a dip in welfare. It is also
important to recognize that little of the welfare results can be ascribed to the direct effect on the
extensive margin of OTC trade, as the [d]-panels of Figures 8-10 show: asset B is endogenously
illiquid for δB < 0.9, no OTC trade in that market actually takes place, but the threat that it
might still affects the equilibrium.

7 Conclusion

We develop a model in which an asset’s liquidity and, hence, its equilibrium price depend on:

1. The microstructure of the secondary market where that asset trades;

2. The microstructure of the secondary market(s) where “competing” assets trade;
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3. The decision of agents to visit these secondary markets; (which in turn depends on the
microstructure of the various markets), and;

4. The endogenous supply of the various assets.

Our model delivers a number of new insights. Even with small amounts of increasing returns,
asset demand curves can be upward sloping because IRS encourages market concentration
and agents are more likely to concentrate in market of an asset with plentiful supply. We also
show that small differences in the microstructure of an OTC market can be magnified into a big
endogenous liquidity advantage for one asset, because traders would prefer to be in the thick
market, and through their own entry help make it even thicker. Our model predicts that for
a reasonable set of parameters, a big and well-established borrower such as the Treasury can
enjoy a significant liquidity advantage, to the point where they may be the only issuer of assets
that trade at a liquidity premium. But in our model, whether the Treasury will be a monopolist
in the issuance of liquid assets or not is endogenous.
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Appendix

A Discussion of key modeling choices

We adopt a matching function that admits both CRS and IRS as subcases, and we present results
for each case, but one may say that some of the most interesting results of the paper are derived
using IRS. So how realistic are increasing returns to scale in financial markets? Quite realistic,
in fact, which is well-established both at the theoretical and the empirical level. Duffie et al.
(2005), and the vast majority of papers that follow their seminal work, adopt an IRS matching
technology.33 Furthermore, a number of empirical finance papers seem to confirm the rele-
vance of IRS in OTC markets: for example, there is strong evidence that markets with higher
trading volumes have lower bid-ask spreads. (See the discussion on page 54 of Vayanos and
Wang (2013).) If higher spreads are associated with longer search times, this would be an argu-
ment suggesting IRS, since it would imply that markets with higher trading volume have more
traders who are searching, and have lower bid ask spreads because trading delays are shorter.
Are higher bid-ask spreads indeed associated with longer search times? Any theoretical model
of OTC trade we are aware of would predict so.34 As for the data, Amihud and Mendelson
(1986) provide support in favor of this empirical regularity. Also, a quick glance at some of the
main OTC markets suggests that this relationship is indeed true: markets that are characterized
by long trading delays, e.g., municipal bonds, are also typically characterized by large spreads.
Crucially, our own analysis in Section 4 shows that only a few percentage points of IRS are
needed in order to explain big divergences in market outcomes.

A key assumption in our analysis is that secondary markets are segmented and agents can
visit only one per period. The first part of this assumption is certainly realistic: Treasuries and
municipal (or corporate) bonds do trade in secondary markets that are completely distinct. The
second part of the assumption, according to which agents can visit only one market, is stronger –
but, clearly, it is not meant to be taken literally. It does not imply a significant loss of generality
since it is a qualitative rather than quantitative ingredient for our model’s central mechanism: it
is just a stark way to capture the idea that even if some investors do visit multiple markets, they
will visit the market where they expect to find better trading conditions more frequently. Fur-
ther, in the absence of market segmentation, the assets would be perfect substitutes and their
prices would always be identical. But the empirical finance literature abounds with examples
of assets that have pretty much identical characteristics, yet they trade at significantly different

33 In that paper, the total number of matches between buyers and sellers of assets is given by 2λµBµS , where
µB , µS are the respective measures of buyers and sellers, equivalent to ρ = 1 in our model. Hence, the arrival rate
of a buyer to a seller is 2λµB , which does not depend of the number of sellers. This process is therefore not just
IRS, but completely congestion-free.

34 For example, in Duffie et al. (2005), the bid-ask spread is strictly decreasing in the arrival rate of trading
opportunities. Faster arrival rates imply a better outside option for the investor, thus a better bargaining position.
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prices (and in secondary markets with very different levels of liquidity, as measured by bid-ask
spreads, trading volumes, etc). It is also a fact that most fixed income dealers simply do not
intermediate multiple kinds of securities. Clearly there is some cost to becoming an expert in
a specific security, even for such similar ones as Treasury and AAA corporate bonds. Thus,
market segmentation is not only essential for our results, but also the empirically relevant case.
For a more detailed discussion of this assumption, see Geromichalos et al. (2018).

In our model, we study a differentiated Cournot game played by two bond issuers. One
question that arises is whether in reality bond issuers are strategic. (‘Strategic’ has two relevant
meanings: whether the issuers’ objective includes profit/rent maximization, and whether they
have market power.) First, the quote of the Assistant Secretary of the Treasury (presented in
Footnote 2) clearly indicates that the Treasury is interested in maximizing its rent from debt
issuance (although they call it “minimizing borrowing costs”). Similar evidence can be found
for debt issuing corporations. Greenwood, Hanson, and Stein (2010) document that debt issu-
ing corporations pay close attention to the actions taken by the Treasury and respond to these
moves by filling in the supply gaps created by changes in government financing patterns. For
another example, Robert Tipp, the Managing Director and Chief Investment Strategist of Pru-
dential Investment Management, highlights that chief financial officers in big corporations are
paying close attention to the market conditions and especially to the demand for bonds issued
by the biggest player in the market: the Treasury.35

Given the discussion so far, we think that writing down a model where issuers play a dif-
ferentiated Cournot game is a reasonable choice. In the baseline model, we focus on the case
of a duopoly, but one can always generalize the model to include a general number of issuers,
N > 2. Then, how much market power each issuer has is a (decreasing) function of N . Over-
all, we think that a model where issuers play a Cournot game is closer to reality than a model
where issuers behave competitively.36 Crucially, our baseline model can be easily extended in
order to study a variety of alternative market structures. The Web Appendix contains three (out
of many possible) such extensions: C.1 studies equilibrium in the presence of a non-strategic
issuer with fixed supply; C.2 studies Stackelberg equilibria where issuer A is the first mover;
C.3 allows for issuer B to have a positive marginal cost of issuing assets.

35 Source: http://www.marketwatch.com/story/treasury-yields-edge-higher-apple-expected-to-issue-bonds-
2016-02-16.

36 For instance, in September 2013, Verizon issued bonds worth 49 billion dollars; in January 2016, Anheuser-
Busch InBev issued bonds worth 46 billion dollars; in March 2018, CVS issued bonds worth 40 billion dollars (the
list goes on). It would be hard to argue that when these corporations issue debt of this size they behave as measure
zero agents whose actions have no effect on market prices.
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B Details of the baseline model and its extensions

B.1 Baseline model

B.1.1 Value functions

We begin with the description of the value functions in the CM. Consider first a buyer who
enters this market with m units of fiat money and dj units of asset j = {A,B}. The Bellman
equation of the buyer is given by:

W (m, dA, dB) = max
X,H,m̂,

d̂A,d̂B

{
X −H + β Ei

{
max

{
Ωi

A

(
m̂, d̂A, d̂B

)
,Ωi

B

(
m̂, d̂A, d̂B

)}}}
s.t. X + φ(m̂+ pAd̂A + pBd̂B) = H + φ(m+ µM + dA + dB),

where variables with hats denote portfolio choices for the next period, and E denotes the ex-
pectations operator. The price of money is expressed in terms of the general good but the price
of bonds is expressed in nominal terms. The function Ωi

j represents the value function in the
OTC market for asset j ∈ {A,B} for a buyer of type i ∈ {C,N}, to be described in more detail
below. At the optimum, X and H are indeterminate but their difference is not. Using this fact
and substituting X −H from the budget constraint into W yields:

W (m, dA, dB) = φ(m+ µM + dA + dB) . . .

+ max
m̂,d̂A,d̂B

{
− φ(m̂+ pAd̂A + pBd̂B)

+ βℓmax
{
ΩC

A

(
m̂, d̂A, d̂B

)
,ΩC

B

(
m̂, d̂A, d̂B

)}
+ β(1− ℓ)max

{
ΩN

A

(
m̂, d̂A, d̂B

)
,ΩN

B

(
m̂, d̂A, d̂B

)}}
. (B.1)

In the last expression, we have also used the fact that the representative buyer will be a C-type
with probability ℓ in order to replace the expectations operator. As is standard in models that
build on LW, the optimal choice of the agent does not depend on the current state (due to the
quasi-linearity of U), and the CM value function is linear. We write:

W (m, dA, dB) = φ(m+ dA + dB) + Υ, (B.2)

where the constant Υ collects the remaining terms that do not depend on the state variables
m, dA, dB.

As is well-known, a seller will not wish to leave the CM with positive amounts of money
and bond holdings. Therefore, when entering the CM a seller will only hold money that she
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received as payment in the preceding DM, and her CM value function is given by:

W S(m) = max
X,H

{
X −H + V S

}
s.t. X = H + φm,

where V S denotes the seller’s value function in the forthcoming DM. We can again use the
budget constraint to substitute X −H and show that W S will be linear:

W S(m) = φm+ V S ≡ ΥS + φm. (B.3)

We now turn to the description of the OTC value functions. Recall that eC ∈ [0, 1] and
eN ∈ [0, 1] denote the fraction of C-types and N-types, respectively, who are entering OTCA.
Using the matching probabilities αij defined in Equations (1)-(2), we can now define the value
function for an agent of type i = {C,N} who decides to enter OTCj , j = {A,B}. Let ζj , denote
the amount of money that gets transferred to the C-type, and χj the amount of assets (of type
j) that gets transferred to the N-type in a typical match in OTCj , j = {A,B}. These terms are
described in detail in Lemma 2 below. We have:

ΩC
A(m, dA, dB) = αCAV (m+ ζA, dA − χA, dB) + (1− αCA)V (m, dA, dB), (B.4)

ΩC
B(m, dA, dB) = αCBV (m+ ζB, dA, dB − χB) + (1− αCB)V (m, dA, dB), (B.5)

ΩN
A (m, dA, dB) = αNAW (m− ζA, dA + χA, dB) + (1− αNA)W (m, dA, dB), (B.6)

ΩN
B (m, dA, dB) = αNBW (m− ζB, dA, dB + χB) + (1− αNB)W (m, dA, dB), (B.7)

where V denotes a buyer’s value function in the DM. Notice that N-type agents proceed directly
to next period’s CM.

Lastly, consider the value functions in the DM. Let q denote the quantity of goods traded,
and τ the total payment in units of fiat money. These terms are described in detail in Lemma 1
below. The DM value function for a buyer who enters that market with portfolio (m, dA, dB) is
given by:

V (m, dA, dB) = u(q) +W (m− τ, dA, dB), (B.8)

and the DM value function for a seller (who enters with no money or assets) is given by:

V S = −q + βW S(τ).
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B.1.2 The terms of trade in the OTC markets and the DM

Consider a meeting between a C-type consumer with portfolio (m, dA, dB) and a producer who,
in the beginning of the DM sub-period, holds no money or assets. The two parties bargain
over a quantity q to be produced by the producer and a cash payment τ , to be made by the
consumer. The consumer makes a TIOLI offer maximizing her surplus subject to the producer’s
participation constraint and the cash constraint. The bargaining problem can be described by:

max
τ,q

{u(q) +W (m− τ, dA, dB)−W (m, dA, dB)}

s.t. − q +W S(τ)−W S(0) = 0,

and the cash constraint τ ≤ m. Substituting the value functions W,W S from (B.2) and (B.3) into
the expressions above, allows us to simplify this problem to:

max
τ,q

{u(q)− φτ}

s.t. q = φτ,

and τ ≤ m. The solution to the bargaining problem is described in the following lemma.

Lemma 1. Let m∗ denote the amount of money that, given the CM value of money, φ, allows the
consumer to purchase the first-best quantity q∗, i.e., let m∗ = q∗/φ. Then, the solution to the bargaining
problem is given by τ(m) = min{m,m∗} and q(m) = φmin{m,m∗}.

Proof. The proof is standard and it is, therefore, omitted.

The solution to the bargaining problem is straightforward. The only variable that affects the
solution is the consumer’s money holdings. As long as the buyer carries m∗ or more, the first-
best quantity q∗ will always be produced. If, on the other hand, m < m∗, the consumer does not
have enough cash to induce the seller to produce q∗. The cash constrained buyer will give up
all her money, τ(m) = m, and the producer will produce the quantity of good that satisfies her
participation constraint under τ(m) = m, namely, q = φm.

While Lemma 1 describes the bargaining solution for all possible money holdings by the
C-type consumer, we know that, since µ > β − 1, the cost of carrying money is strictly positive
and a consumer will never choose to hold m > m∗.37 Hence, from now on we will focus on the
binding branch of the bargaining solution, i.e., we will set τ(m) = m and q(m) = φm.

We now describe the terms of trade in the OTC markets. Consider a meeting in OTCj ,

37 Even if the consumer in question matches with an N-type in the preceding OTC round and acquires some
extra liquidity, she will never choose to adjust her post-OTC money balances in a way that these exceed m∗. This
would be unnecessary since carrying m∗ is already enough to buy her the first-best quantity in the forthcom-
ing DM.
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j = {A,B}, between a C-type carrying the portfolio (m, dA, dB) and an N-type with portfolio
(m̃, d̃A, d̃B). These agents negotiate over an amount of money, ζj , to be transferred to the C-type,
and an amount of type-j assets, χj , to be transferred to the N-type. Recall that the C-type and
N-type split the available surplus based on proportional bargaining, with θ ∈ (0, 1) denoting
the C-type’s bargaining power. In the match under consideration, the surpluses for the C-type
and the N-type agents are given by:

SCj = V (m+ ζj, dA − I{j = A}χA, dB − I{j = B}χB)− V (m, dA, dB) (B.9)

= u(φ(m+ ζj))− u(φm)− φχj,

SNj = W (m̃− ζj, d̃A + I{j = A}χA, d̃B + I{j = B}χB)−W (m̃, d̃A, d̃B) = φ(χj − ζj), (B.10)

where I denotes the identity function, and the second equalities in the equations above exploit
the definitions of the functions V,W (i.e., Equations (B.8) and (B.2), respectively). The bargain-
ing problem is described by:

max
ζj , χj

SCj s.t. SCj =
θ

1− θ
SNj, χj ≤ dj.

We restrict attention to equilibria where the N-type’s money holdings never limit the trade,
hence the corresponding constraint ζj ≤ m̃ is slack. A sufficient condition that guarantees this
in equilibrium is given by inequality (6): inflation rates must be low enough that C-types (who
carry m units of money) and N-types (who carry m̃) can always obtain the first-best m∗ if they
were to pool their money (m + m̃ ≥ m∗). Actual trade may achieve m∗ or not, depending on
whether the C-type carries enough assets to compensate the N-type for her money. Exclud-
ing the scarce-money branch of the bargaining solution is convenient: that branch ultimately
generates a kink in the value function, which gives rise to an asset pricing indeterminacy, as
we extensively analyzed in Geromichalos and Herrenbrueck (2016). It is also innocent for the
purposes of our present paper: assets can only be priced (in the CM) at a determinate liquidity
premium if χj ≤ dj binds (in the OTC) but ζj ≤ m̃ does not. Since our interest is in asset issuers
who seek to exploit a positive premium, we think the restriction is acceptable.

The solution to the bargaining problem is described in the following lemma.

Lemma 2. The bargaining solution is given by:

ζj(m, dj) = min{ζ̃j(m, dj),m
∗ −m}

and

χj(m, dj) =
z(ζj(m, dj))

φ
= min{dj, d̄ },
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where we have defined:

ζ̃j(m, dj) ≡ {ζ : φdj = z(ζ)},

z(ζ) ≡ (1− θ)[u(φ(m+ ζ))− u(φm)] + θφζ,

d̄ ≡ z(m∗ −m)

φ
.

Proof. It is straightforward to check that the suggested answer satisfies the necessary and suffi-
cient conditions for maximization in each case.

The OTC bargaining solution is intuitive. Agents’ objective is to maximize the available
total surplus of the match. This surplus is generated by transferring more money to the C-type,
and it is maximized when the C-type’s post-OTC money holdings are m + ζj = m∗. However,
in order to “afford” this transfer of liquidity, the C-type needs to have enough assets, and the
critical level of asset holdings that allows her to acquire ζj = m∗ −m is given by d̄.

Summing up, if the C-type carries a sufficient amount of assets (defined as d̄), then the
money transfer will be optimal, i.e., ζj = m∗ −m, and the asset transfer will satisfy χj = d̄. On
the other hand, if the C-type is constrained by her asset holdings (i.e., if dj < d̄), then the C-type
will give up all her assets, χj = dj , and she will receive a money transfer which is smaller than
m∗ −m; more precisely, it satisfies ζj = ζ̃j (< m∗ −m).

B.2 Model with three assets and three secondary asset markets

B.2.1 Analysis of value functions and terms of trade

First, we analyze the value functions in the CM. The value function of a buyer who enters the
CM with m unit of money and dj units of asset j, j = {A,B1, B2}, is given by:

W (m, dA, dB1 , dB2) = max
X,H,m̂,

d̂A,d̂B1
,d̂B2

{
X −H . . .

+β Ei

{
max

{
Ωi

A

(
m̂, d̂A, d̂B1 , d̂B2

)
,Ωi

B1

(
m̂, d̂A, d̂B1 , d̂B2

)
,Ωi

B2

(
m̂, d̂A, d̂B1 , d̂B2

)}}}
s.t. X + φ(m̂+ pAd̂A + pB1 d̂B1 + pB2 d̂B2) = H + φ(m+ µM + dA + dB1 + dB2),

where Ωi
j denotes the value function of an i-type buyer, i = {C,N}, who enters the OTC market

for asset j.
Next, the value functions in the OTC markets are given by:

ΩC
A(m, dA, dB1 , dB2) = αCAV (m+ ζA, dA − χA, dB1 , dB2) + (1− αCA)V (m, dA, dB1 , dB2),
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ΩC
B1
(m, dA, dB1 , dB2) = αCB1V (m+ ζB1 , dA, dB1 − χB1 , dB2) + (1− αCB1)V (m, dA, dB1 , dB2),

ΩC
B2
(m, dA, dB1 , dB2) = αCB2V (m+ ζB2 , dA, dB1 , dB2 − χB2) + (1− αCB2)V (m, dA, dB1 , dB2),

ΩN
A (m, dA, dB1 , dB2) = αNAW (m− ζA, dA + χA, dB1 , dB2) + (1− αNA)W (m, dA, dB1 , dB2),

ΩN
B1
(m, dA, dB1 , dB2) = αNB1W (m− ζB1 , dA, dB1 + χB1 , dB2) + (1− αNB1)W (m, dA, dB1 , dB2),

ΩN
B2
(m, dA, dB1 , dB2) = αNB2W (m− ζB2 , dA, dB1 , dB2 + χB2) + (1− αNB2)W (m, dA, dB1 , dB2),

where ζj is the amount of money that gets transferred to a C-type, and χj is the amount of asset
j that gets transferred to an N-type in a typical match in OTCj .

Finally, the value function in the DM is given by:

V (m, dA, dB1 , dB2) = u(q) +W (m− τ, dA, dB1 , dB2).

We now turn to the description of the terms of trade in the various markets, starting
with the DM. Consider a meeting between a C-type consumer with m units of money and a
producer. Given that the C-type consumer makes a take-it-or-leave-it offer and that the liquid-
ity constraint will always bind due to the cost of carrying money, the bargaining solution is
given by:

q(m) = φm and τ(m) = m.

Next, we turn to the terms of trade in the OTC markets. Consider a meeting in OTCj

between a C-type with portfolio (m, dA, dB) and an N-type with portfolio (m̃, d̃A, d̃B). The bar-
gaining surpluses of an i-type buyer from an OTCj trading, Sij , are given by:

SCj = V (m+ ζj, dA − I{j = A}χA, dB1 − I{j = B1}χB1 , dB2 − I{j = B2}χB2)− V (m, dA, dB1 , dB2)

= u(φ(m+ ζj))− u(φm)− φχj,

SNj = W (m̃− ζj, d̃A + I{j = A}χA, d̃B1 + I{j = B1}χB1 , d̃B2 + I{j = B2}χB2)−W (m̃, d̃A, d̃B1 , d̃B2)

= φ(χj − ζj).

The bargaining solution (ζj, χj) solves:

φχj = (1− θ)[u(φ(m+ ζj))− u(φm)] + θφζj,

ζj = min{ζ̃j,m∗ −m},

ζ̃j = {ζ : φdj = (1− θ)[u(φ(m+ ζ))− u(φm)] + θφζ}.
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We can now derive the objective function of a buyer in the CM, which is given by:

J(m̂, d̂A, d̂B1 , d̂B2) = −φ
(
m̂+ pAd̂A + pB1 d̂B1 + pB2 d̂B2

)
+ βφ̂

(
m̂+ d̂A + d̂B1 + d̂B2

)
. . .

+ βℓ
[
u(φ̂m̂)− φ̂m̂+max

{
αCASCA, αCB1SCB1 , αCB2SCB2

}]
.

B.2.2 Matching probabilities

Let eCj ∈ [0, 1] and eNj ∈ [0, 1] denote the fractions of C-types and N-types, respectively, who
choose to enter OTCj , j = {A,B1, B2}. Then, the measure of asset sellers and buyers in OTCj is
given by eCjℓ and eNj(1− ℓ), respectively, and the measure of asset sellers and buyers in OTCB

is given by (1− eCj)ℓ and (1− eNj)(1− ℓ). Letting αij ∈ [0, 1] denote the matching probabilities
for agents of type i = {C,N} in OTCj , j = {A,B1, B2}, we have:

αCA ≡ fA(eCAℓ, eNA(1− ℓ))

eCAℓ
, αNA ≡ fA(eCAℓ, eNA(1− ℓ))

eNA(1− ℓ)
,

αCB1 ≡
fB(eCB1

ℓ, eNB1
(1− ℓ))

eCB1
ℓ

, αNB1 ≡
fB(eCB1

ℓ, eNB1
(1− ℓ))

eNB1
(1− ℓ)

,

αCB2 ≡
fB(eCB2

ℓ, eNB2
(1− ℓ))

eCB2
ℓ

, αNB2 ≡
fB(eCB2

ℓ, eNB2
(1− ℓ))

eNB2
(1− ℓ)

,

where:

eCA + eCB1
+ eCB2

= 1,

eNA + eNB1
+ eNB2

= 1.

B.2.3 Equilibrium

We now describe the steady state equilibrium of the model with three assets and three sec-
ondary asset markets. The core variables are {q0A, q1A, q0B1 , q1B1 , q0B2 , q1B2 , eCA, eNA, eCB1

, eNB1
,

eCB2
, eNB2

}, and we will describe the derivation of equilibrium following the same methodology
as in the baseline model. For this analysis recall that we have defined ω(q) ≡ θ + (1− θ)u′(q).

First, the money demand equations are given by:

i = ℓ

(
1− αCj

θ

ω(q1j)

)
[u′(q0j)− 1] + ℓαCj

θ

ω(q1j)
[u′(q1j)− 1]. (B.11)

The OTC trading protocols:

q1j = min{q∗, q0j + φζ̃j},
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combined with the OTC bargaining solutions:

φdj = (1− θ)[u(φ(m+ ζ̃j)− u(φm)] + θφζ̃j,

and the market clearing conditions:

A = eCAdA, B1 = eCB1
dB1 , B2 = eCB2

dB2 , φM = eCAq0A + eCB1
q0B1 + eCB2

q0B2 ,

yield:

q1A = min

{
q∗, q0A +

1

θ

A

M

eCAq0A + eCB1
q0B1 + eCB2

q0B2

eCA

− 1− θ

θ
[u(q1A)− u(q0A)]

}
, (B.12)

q1B1 = min

{
q∗, q0B1 +

1

θ

B1

M

eCAq0A + eCB1
q0B1 + eCB2

q0B2

eCB1

− 1− θ

θ
[u(q1B1)− u(q0B1)]

}
, (B.13)

q1B2 = min

{
q∗, q0B2 +

1

θ

B2

M

eCAq0A + eCB1
q0B1 + eCB2

q0B2

eCB2

− 1− θ

θ
[u(q1B2)− u(q0B2)]

}
. (B.14)

The next important task is to describe the agents’ entry decisions. For that, it is useful
to start by describing the liquidity premia of the various assets. The liquidity premium of
asset j, denoted by Lj , is given by the percentage difference between an asset’s price and its
fundamental value. In other words, Lj solves:

pj =
1

1 + i

(
1 + Lj

)
,

where:

Lj = ℓαCj
θ

ω(q1j)
[u′(q1j)− 1].

For the optimal entry of C-type and N-type agents, there are seven possible cases:

Case 1: eCA ∈ (0, 1), eCB1
∈ (0, 1), eCB2

∈ (0, 1) if:

S̃CA = S̃CB1 = S̃CB2 ,

αNASNA = αNB1SNB1 = αNB2SNB2 .
(B.15)

Case 2: eCA ∈ (0, 1), eCB1
∈ (0, 1), eCB2

= 0 if:

S̃CA = S̃CB1 > S̃CB2 ,

αNASNA = αNB1SNB1 > αNB2SNB2 .
(B.16)
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Case 3: eCA ∈ (0, 1), eCB1
= 0, eCB2

∈ (0, 1) if:

S̃CA = S̃CB2 > S̃CB1 ,

αNASNA = αNB2SNB2 > αNB1SNB1 .
(B.17)

Case 4: eCA = 0, eCB1
∈ (0, 1), eCB2

∈ (0, 1) if:

S̃CB1 = S̃CB2 > S̃CA,

αNB1SNB1 = αNB2SNB2 > αNASNA.
(B.18)

Case 5: eCA = 1, eCB1
= 0, eCB2

= 0 if:

S̃CA > max{S̃CB1 , S̃CB2},

αNASNA > max{αNB1SNB1 , αNB2SNB2}.
(B.19)

Case 6: eCA = 0, eCB1
= 1, eCB2

= 0 if:

S̃CB1 > max{S̃CA, S̃CB2},

αNB1SNB1 > max{αNASNA, αNB2SNB2}.
(B.20)

Case 7: eCA = 0, eCB1
= 0, eCB2

= 1 if:

S̃CB2 > max{S̃CA, S̃CB1},

αNB2SNB2 > max{αNASNA, αNB1SNB1}.
(B.21)

where:

S̃Cj = −iq0j − Lj[(1− θ)(u(q1j)− u(q0j)) + θ(q1j − q0j)] + ℓ[u(q0j)− q0j] + ℓαCjSCj,

SCj = θ[u(q1j)− u(q0j)− q1j + q0j],

SNj = (1− θ)[u(q1j)− u(q0j)− q1j + q0j].

Definition of equilibrium

Definition 2. For given asset supplies {A, B1, B2}, the steady-state equilibrium for the core
variables of the model consists of the equilibrium quantities and entry choices, {q0A, q1A, q0B1 ,
q1B1 , q0B2 , q1B2 , eCA, eNA, eCB1

, eNB1
, eCB2

, eNB2
}, such that (B.11), (B.12), (B.13), (B.14), and one of

(B.15), (B.16), (B.17), (B.18), (B.19), (B.20), (B.21) hold. The remaining variables follow directly
from the core variables as in the baseline model.
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B.3 Model with two marketplaces

B.3.1 Analysis of value functions and terms of trade

First, we analyze the value functions in the CM. The representative agent has five state vari-
ables. As always m represents money holdings, and dA, dB denote the amounts of asset A and
B, respectively, carried by the agent for trade in the segmented marketplace. The new states
dA2, dB2 represent the amounts of asset A and B, receptively, carried by the agent for trade in
the consolidated marketplace.38 The value function of an agent who enters the CM is given by:

W (m, dA, dB, dA2, dB2) = max
X,H,m̂,

d̂A,d̂B ,d̂A2,d̂B2

{
X −H + βmax

{
M0(m̂, d̂A, d̂B, d̂A2, d̂B2),

M1(m̂, d̂A, d̂B, d̂A2, d̂B2)− κ1, M2(m̂, d̂A, d̂B, d̂A2, d̂B2)− κ2

}}
s.t. X + φ(m̂+ pAd̂A + pBd̂B + pAd̂A2 + pBd̂B2)

= H + φ(m+ µM + dA + dB + dA2 + dB2),

where:

M0(m̂, d̂A, d̂B, d̂A2, d̂B2) = V (m̂, d̂A, d̂B, d̂A2, d̂B2),

M1(m̂, d̂A, d̂B, d̂A2, d̂B2) = Ei

[
max

{
ΩiA(m̂, d̂A, d̂B, d̂A2, d̂B2),ΩiB(m̂, d̂A, d̂B, d̂A2, d̂B2)

}]
,

M2(m̂, d̂A, d̂B, d̂A2, d̂B2) = Ei

[
Ωi2(m̂, d̂A, d̂B, d̂A2, d̂B2)

]
.

Notice that M0 is the value function of not participating in any marketplace. (Since entering
either of the two marketplaces entails a cost, the agent should always the option to not partic-
ipate.) M1 is the value function of participating in the segmented marketplace, and κ1 is the
associated entry cost. M2 is the value function of participating in the consolidated marketplace,
and κ2 is the associated entry cost. (A mnemonic rule similar to the one described in Footnote 38
also applies here.)

Next, we move to the value functions in the OTC markets. We start with the segmented
marketplace. Let Ωij denote the value function of an i-type agent, i = {C,N}, who enters OTCj ,
j = {A,B}. These value functions are given by:

ΩCA(m, dA, dB, dA2, dB2) = αCAV (m+ ζA, dA − χA, dB, dA2, dB2)

+ (1− αCA)V (m, dA, dB, dA2, dB2),

38 As a mnemonic rule, the “2” is meant to remind the reader that these variables pertain to the market where
two assets can be traded, namely, the consolidated market.
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ΩCB(m, dA, dB, dA2, dB2) = αCBV (m+ ζB, dA, dB − χB, dA2, dB2)

+ (1− αCB)V (m, dA, dB, dA2, dB2),

ΩNA(m, dA, dB, dA2, dB2) = αNAW (m− ζA, dA + χA, dB, dA2, dB2)

+ (1− αNA)W (m, dA, dB, dA2, dB2),

ΩNB(m, dA, dB, dA2, dB2) = αNBW (m− ζB, dA, dB + χB, dA2, dB2)

+ (1− αNB)W (m, dA, dB, dA2, dB2),

where ζj is the amount of money transferred to a C-type, and χj is the amount of asset j trans-
ferred to an N-type in a typical match in OTCj .

Now we turn to the value functions in the consolidated marketplace. Let Ωi2 denote the
value function of an i-type agent who enters this marketplace. These value functions are
given by:

ΩC2(m, dA, dB, dA2, dB2) = αC2V (m+ ζ2, dA, dB, dA2 − χA2, dB2 − χB2)

+ (1− αC2)V (m, dA, dB, dA2, dB2),

ΩN2(m, dA, dB, dA2, dB2) = αN2W (m− ζ2, dA, dB, dA2 + χA2, dB2 + χB2)

+ (1− αN2)W (m, dA, dB, dA2, dB2),

where ζ2 is the amount of money transferred to a C-type, and χj2 is the amount of asset j

transferred to an N-type in a typical match.
Finally, the value function in the DM is given by:

V (m, dA, dB, dA2, dB2) = u(q) +W (m− τ, dA, dB, dA2, dB2).

We now turn to the description of the terms of trade in the various markets, starting with
the DM. Since this version of the model has no differences regarding the bargaining protocol
in the DM, the bargaining solution is still given by:

q(m) = φm and τ(m) = m.

Next, we turn to the terms of trade in the OTC markets. First consider a meeting in OTCj

in the segmented the marketplace between a C-type with portfolio (m, dA, dB, dA2, dB2) and an
N-type with portfolio (m̃, d̃A, d̃B, d̃A2, d̃B2). By definition, a C-type who enters this marketplace
has dA2 = dB2 = 0, and either dA = 0 or dB = 0 (because an agent who goes to the segmented
marketplace specializes only in one asset). Let Sij denote the surplus of an i-type in OTCj .
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These surpluses are given by:

SCA = V (m+ ζA, dA − χA, dB, dA2, dB2)− V (m, dA, dB, dA2, dB2)

= u(φ(m+ ζA))− u(φm)− φχA,

SNA = W (m̃− ζA, d̃A + χA, d̃B, d̃A2, d̃B2)−W (m̃, d̃A, d̃B, d̃A2, d̃B2)

= −φζA + φχA,

SCB = V (m+ ζB, dA, dB − χB, dA2, dB2)− V (m, dA, dB, dA2, dB2)

= u(φ(m+ ζB))− u(φm)− φχB,

SNB = W (m̃− ζB, d̃A, d̃B + χB, d̃A2, d̃B2)−W (m̃, d̃A, d̃B, d̃A2, d̃B2)

= −φζB + φχB.

We now describe the bargaining solutions. For (ζA, χA), we have:

φχA = (1− θ)[u(φ(m+ ζA))− u(φm)] + θφζA,

ζA = min{m∗ −m, ζ̃A},

ζ̃A = {ζ : φdA = (1− θ)[u(φ(m+ ζ))− u(φm)] + θφζ}.

For (ζB, χB), we have:

φχB = (1− θ)[u(φ(m+ ζB))− u(φm)] + θφζB,

ζB = min{m∗ −m, ζ̃B},

ζ̃B = {ζ : φdB = (1− θ)[u(φ(m+ ζ))− u(φm)] + θφζ}.

Next consider a meeting in the consolidated marketplace between a C-type with portfolio
(m, dA, dB, dA2, dB2) and an N-type with portfolio (m̃, d̃A, d̃B, d̃A2, d̃B2). By definition, a C-type
agent who enters this marketplace has dA = dB = 0. Let Si2 denote the surplus of an i-type in
this marketplace. These surpluses are given by:

SC2 = Vn(m+ ζ2, dA, dB, dA − χA2, dB − χB2)− Vn(m, dA, dB, dA2, dB2)

= u(φ(m+ ζ2))− u(φm)− φχA2 − φχB2,

SN2 = Wn(m̃− ζ2, d̃A, d̃B, d̃A + χA2, d̃B + χB2)−Wn(m̃, d̃A, d̃B, d̃A2, d̃B2)

= −φζ2 + φχA2 + φχB2.
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We now describe the bargaining solutions. For (ζ2, χA2, χB2):

φχA2 + φχB2 = (1− θ)[u(φ(m+ ζ2))− u(φm)] + θφζ2,

ζ2 = min{m∗ −m, ζ̃2},

ζ̃2 = {ζ : φdA + φdB = (1− θ)[u(φ(m+ ζ))− u(φm)] + θφζ}.

We can now derive the objective function of an agent in the CM, which is given by:

J(m̂, d̂A, d̂B, d̂A2, d̂B2)

= −φ(m̂+ pAd̂A + pBd̂B + pAd̂A2 + pBd̂B2) . . .

+ βφ̂[m̂+ d̂A + d̂B + d̂A2 + d̂B2] + βℓ[u(φ̂m̂)− φ̂m̂] . . .

+ βmax
{
0,max

{
max

{
ℓαCASCA, ℓαCBSCB

}
+ (1− ℓ)max

{
αNASNA, αNBSNB

}
− κ1,

ℓαC2SC2 + (1− ℓ)αN2SN2 − κ2

}}
.

This objective function is quite different and more complicated compared to the baseline model,
therefore a couple of comments are in order. Notice that the agent’s objective has three layers of
maximum operators. First, the agent chooses whether to participate in any marketplace at all,
or walk away and obtain a zero surplus from OTC trade. Second, conditional on participating,
then the agent chooses whether she will go to the segmented or the consolidated marketplace.
Third, if the agent chose to visit the segmented marketplace, she must then decide whether to
visit OTCA or OTCB. Another, more subtle difference is that, unlike the baseline model, here
the surplus terms of an N-type appear in the objective function. This is because agents choose
their marketplace before the idiosyncratic liquidity shock has been revealed. As a result, the
agent’s optimal decision must take into account the surplus she will make as an N-type.

B.3.2 Matching probabilities

With agents’ choosing between two marketplaces, matching probabilities change drastically
compared to the baseline model. Denote the measure of agents who do not participate in any
marketplace by e0. Also, let e2 denote the fraction of marketplace participants who choose to
go to the consolidated marketplace.39 Let eC denote the fraction of C-types who go to OTCA

among the segmented marketplace participants. Similarly, let eN denote the fraction of N-types
who visit OTCA, conditional on having chosen the segmented marketplace.

For the segmented marketplace, αij is the matching probability of an i-type who enters

39 Notice that while the term e0 is a measure, the term e2 is a fraction. We do not explicitly define the measure
of the segmented marketplace participants, since we can always write it as (1− e0)(1− e2).
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OTCj . These matching probabilities are given by:

αCA =
fA[(1− e0)(1− e2)eCℓ, (1− e0)(1− e2)eN(1− ℓ)]

(1− e0)(1− e2)eCℓ
,

αCB =
fB[(1− e0)(1− e2)(1− eC)ℓ, (1− e0)(1− e2)(1− eN)(1− ℓ)]

(1− e0)(1− e2)(1− eC)ℓ
,

αNA =
fA[(1− e0)(1− e2)eCℓ, (1− e0)(1− e2)eN(1− ℓ)]

(1− e0)(1− e2)eN(1− ℓ)
,

αNB =
fB[(1− e0)(1− e2)(1− eC)ℓ, (1− e0)(1− e2)(1− eN)(1− ℓ)]

(1− e0)(1− e2)(1− eN)(1− ℓ)
,

which are equal to:

αCA = [(1− e0)(1− e2)]
ρ fA[eCℓ, eN(1− ℓ)]

eCℓ
,

αCB = [(1− e0)(1− e2)]
ρ fB[(1− eC)ℓ, (1− eN)(1− ℓ)]

(1− eC)ℓ
,

αNA = [(1− e0)(1− e2)]
ρ fA[eCℓ, eN(1− ℓ)]

eN(1− ℓ)
,

αNB = [(1− e0)(1− e2)]
ρ fB[(1− eC)ℓ, (1− eN)(1− ℓ)]

(1− eN)(1− ℓ)
.

For the consolidated marketplace, αi2 is the matching probability of an i-type. These match-
ing probabilities are given by:

αC2 =
f2[(1− e0)e2ℓ, (1− e0)e2(1− ℓ)]

(1− e0)e2ℓ
, αN2 =

f2[(1− e0)e2ℓ, (1− e0)e2(1− ℓ)]

(1− e0)e2(1− ℓ)
,

which are equal to:

αC2 = [(1− e0)e2]
ρ δ2(1− ℓ), αN2 = [(1− e0)e2]

ρ δ2ℓ,

where δ2 is the matching efficiency in the OTC market in the consolidated marketplace.

B.3.3 Equilibrium

We now describe the steady state equilibrium of the model with two marketplaces. We pro-
ceed as follows. First, we describe the equilibrium conditions (importantly, the demand for
the various assets) implied by agents who (i) do not participate in any marketplaces; (ii) par-
ticipate in the segmented marketplace; and (iii) participate in the consolidated marketplace.
We do so taking as given the measures of agents in the various marketplaces (including the
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non-participants). Second, we endogenize these measures by studying agents’ optimal entry
decisions in the various marketplaces.

Equilibrium conditions implied by non-participants Here there is only one core variable, q.
Non-participants rely only on their own money holdings, and their money demand equation is
given by:

i = ℓ(u′(q)− 1). (B.22)

Since in the last step of equilibrium characterization we will describe the agents’ entry deci-
sions, it is useful to define the non-participant agent’s surplus, which is given by:

S0 = −iq + ℓ[u(q)− q].

Equilibrium conditions implied by segmented marketplace participants Here the core vari-
ables are {q0A, q1A, q0B, q1B, eC, eN}, as in the baseline model. Recall that we have defined ω(q) ≡
θ + (1− θ)u′(q) ≥ 1.

First, the money demand equations are given by:

i = ℓ

[
1− αCA

θ

ω(q1A)

]
[u′(q0A)− 1] + ℓαCA

θ

ω(q1A)
[u′(q1A)− 1], (B.23)

i = ℓ

[
1− αCB

θ

ω(q1B)

]
[u′(q0B)− 1] + ℓαCB

θ

ω(q1B)
[u′(q1B)− 1]. (B.24)

The OTC trading protocols:

q1A = min{q∗, q0A + φζ̃A},

q1B = min{q∗, q0B + φζ̃B},

combined with the OTC bargaining solutions:

φdA = (1− θ)[u(q1A)− u(q0A)] + θφζ̃A,

φdB = (1− θ)[u(q1B)− u(q0B)] + θφζ̃B,

yield:

q1A = min

{
q∗, q0A +

φdA − (1− θ)[u(q1A)− u(q0A)]

θ

}
, (B.25)

q1B = min

{
q∗, q0B +

φdB − (1− θ)[u(q1B)− u(q0B)]

θ

}
. (B.26)
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Next, we describe the liquidity premia implied by the demand of segmented marketplace
participants, denoted by Lj . We define these premia as the percentage difference between an
asset’s price and its fundamental value. Assuming that the measure of agents visiting the seg-
mented marketplace is positive, then Lj solves:

pA =
1

1 + i
(1 + LA), pB =

1

1 + i
(1 + LB),

where:

LA = ℓαCA
θ

ω(q1A)
[u′(q1A)− 1], (B.27)

LB = ℓαCB
θ

ω(q1B)
[u′(q1B)− 1]. (B.28)

If the measure of agents visiting this marketplace is zero, the liquidity premia will be exclusively
determined by the demand of the consolidated marketplace participants.

The optimal entry of C-types (who have chosen the segmented marketplace) is character-
ized by:

eC =


1, S̃CA > S̃CB,

0, S̃CA < S̃CB,

∈ [0, 1], S̃CA = S̃CB,

(B.29)

where:

S̃CA =− iq0A − LAφdA + ℓ
[
u(q0A)− q0A + αCASCA

]
,

SCA = θ
(
u(q1A)− u(q0A)− q1A + q0A

)
,

and

S̃CB =− iq0B − LBφdB + ℓ
[
u(q0B)− q0B + αCBSCB

]
,

SCB = θ
(
u(q1B)− u(q0B)− q1B + q0B

)
.

Similarly, for the N-types’ decision, we have:

eN =


1, αNASNA > αNBSNB,

0, αNASNA < αNBSNB,

∈ [0, 1], αNASNA = αNBSNB,

(B.30)
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where:

SNA = (1− θ)
(
u(q1A)− u(q0A)− q1A + q0A

)
,

SNB = (1− θ)
(
u(q1B)− u(q0B)− q1B + q0B

)
.

Equilibrium conditions implied by consolidated marketplace participants Here the core
variables are {q0, q1}. Recall that we have defined ω(q) ≡ θ + (1− θ)u′(q) ≥ 1.

First, the money demand equation is given by:

i = ℓ

[
1− αC2

θ

ω(q1)

]
[u′(q0)− 1] + ℓαC2

θ

ω(q1)
[u′(q1)− 1]. (B.31)

The OTC trading protocols:

q1 = min{q∗, q0 + φζ̃2},

combined with the OTC bargaining solutions:

φdA2 + φdB2 = (1− θ)[u(q1)− u(q0)] + θφζ̃2,

yield:

q1 = min

{
q∗, q0 +

φdA2 + φdB2 − (1− θ)[u(q1)− u(q0)]

θ

}
. (B.32)

Next, we describe the liquidity premia implied by the demand of consolidated marketplace
participants, denoted by Lj2. As usual, we define these premia as the percentage difference
between an asset’s price and its fundamental value. Assuming that the measure of agents
visiting the consolidated marketplace is positive, then Lj2 solves:

pA2 =
1

1 + i
(1 + LA2), pB2 =

1

1 + i
(1 + LB2),

where:

LA2 = ℓαC2
θ

ω(q1)
[u′(q1)− 1], (B.33)

LB2 = ℓαC2
θ

ω(q1)
[u′(q1)− 1]. (B.34)

If the measure of agents visiting this marketplace is zero, the liquidity premia will be exclusively
determined by the demand of the segmented marketplace participants.
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Since in the last step of equilibrium characterization we will describe the agents’ entry de-
cisions, it is useful to define the consolidated marketplace participants’ surpluses. For the C-
types, we have:

S̃C2 = −iq0 − LAφdA2 − LBφdB2 + ℓ
[
u(q0)− q0 + αC2SC2

]
,

SC2 = θ
(
u(q1)− u(q0)− q1 + q0

)
.

For the N-types, we have:

SN2 = (1− θ)
(
u(q1)− u(q0)− q1 + q0

)
.

Market clearing and no-arbitrage conditions The money market clearing condition is:

φM = (1− e0)[(1− e2)[eCq0A + (1− eC)q0B] + e2q0] + e0q. (B.35)

The asset market clearing conditions are:

SA = (1− e0)[(1− e2)eCdA + e2dA2], (B.36)

SB = (1− e0)[(1− e2)(1− eC)dB + e2dB2]. (B.37)

Finally, assuming positive measures of agents in both marketplaces, no-arbitrage requires the
liquidity premia implied by both types of marketplace participants to be equal:

LA = LA2, (B.38)

LB = LB2. (B.39)

Entry choices of marketplaces Recall that the surplus of a non-participant agent was defined
in section B.3.3 and denoted by S0. The surplus of an agent in the segmented marketplace is
given by:

S1 = S̃CA ·I{eC > 0}+ S̃CB ·I{eC = 0} . . . (B.40)

+ (1− ℓ)
[
αNASNA ·I{eN > 0}+ αNBSNB ·I{eN = 0}

]
.

Finally, the surplus of an agent choosing the consolidated marketplace is given by:

S2 = S̃C2 + (1− ℓ)αN2SN2. (B.41)
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The optimal marketplace choice is then characterized by:

e0 =


1, S0 > max{S1 − κ1, S2 − κ2},
0, S0 < max{S1 − κ1, S2 − κ2},
∈ [0, 1], S0 = max{S1 − κ1, S2 − κ2},

(B.42)

and, conditional on e0 < 1:

e2 =


1, S2 − κ2 > S1 − κ1,

0, S2 − κ2 < S1 − κ1,

∈ [0, 1], S2 − κ2 = S1 − κ1.

(B.43)

Definition of equilibrium

Definition 3. For given asset supplies {A,B}, the steady-state equilibrium of the model consists
of 21 variables: the equilibrium quantity {q} implied by the agents not participating in any mar-
ketplace; the equilibrium quantities {q0A, q1A, q0B, q1B}, the entry choices {eC, eN}, the liquidity
premia {LA, LB}, and the asset holdings {dA, dB}, implied by the agents participating in the
segmented marketplace; the equilibrium quantities {q0, q1}, the liquidity premia {LA2, LB2},
and the asset holdings {dA2, dB2}, implied by agents participating in the consolidated market-
place; the price of money {φ}; and the entry decisions of marketplaces {e0, e2}. These equilib-
rium variables are determined by (B.22), (B.23), (B.24), (B.25), (B.26), (B.27), (B.28), (B.29), (B.30),
(B.31) (B.32), (B.33), (B.34), (B.35), (B.36), (B.37), (B.38), (B.39), (B.42), and (B.43).
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