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C Strategic Variants

In the paper, we analyze comparative statics of asset supplies and macro variables with respect
to the parameters of OTC microstructure, assuming the issuers play a static Nash game with
zero cost of issuing assets. Here, we analyze three variations of this model: (1) one issuer is
non-strategic and the other best-responds; (2) one issuer is a Stackelberg leader and the other is
a Stackelberg follower; (3) one issuer has a positive marginal cost of issuing assets.

C.1 Analysis of the model with one non-strategic issuer

Suppose we hold A fixed, and let B best-respond. We call this case “semi-strategic” in distinc-
tion to the “fully strategic” case analyzed in Section 4.3. The incentives of issuer B are still iden-
tical to those characterized in Section 4.2; only, instead of looking at the full two-dimensional
“playing field”, we only need to be concerned with one vertical slice of it, corresponding to a
fixed level of A.
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Figure C.1: Comparative statics with respect to δB, of equilibria where B best responds to (large)
A = 0.5Ā, with CRS (ρ = 0).
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Figure C.2: Comparative statics with respect to δB, of equilibria where B best responds to (large)
A = 0.5Ā, with IRS (ρ = 0.1).
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Figure C.3: Comparative statics with respect to δB, of equilibria where B best responds to
(small) A = 0.2Ā, with CRS (ρ = 0).
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Figure C.4: Comparative statics with respect to δB, of equilibria where B best responds to
(small) A = 0.2Ā, with IRS (ρ = 0.1).
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We consider two values of A; “large” (= 0.5Ā) and “small” (= 0.2Ā). The large value is ap-
proximately what a monopolist would pick, or a Stackelberg leader. The small value is shown
for comparison, as it makes it easier for B to outcompete A for secondary market liquidity. We
maintain throughout that δA ≥ δB. The interpretation is that A is a dominant issuer, such as the
U.S. Treasury, who never has any exogenous disadvantages in secondary markets.

Figures C.1-C.4 show comparative statics of δB, as in the main text, for four numerical ex-
periments: large A versus small A, CRS versus a moderate amount of IRS (ρ = 0.1). As before,
lines are only shown in the graph where the result is determinate. For example, the quantity B

is omitted in regions where eC = 1, where B’s premium is zero and she is indifferent to issuing
any amount.

The results are straightforward: a smaller δB reduces the gains from entering the B-market.
N-types are more sensitive to this, which compounds the effect from the C-types’ point of view
(αCB < (1 − ℓ)δB). As a result, B’s liquidity premium is significantly reduced which in turn
prompts B to issue less. With IRS, these effects are amplified – except for the fact that for δB

large enough, issuer B takes advantage and issues so much that all secondary trade concen-
trates in the B-market. As we saw in the main text, this would not have been possible with two
strategic players; A would have protected its secondary market by issuing more in turn.

Now, does this mean that AAA corporate bonds would become more liquid than Treasuries,
if only their supply was large enough? We do not want to take the model so literally, as other
considerations may come into play. For example, suppose that there is a positive (and perhaps
upward sloping) cost of issuing safe debt – in that case, issuer B may not be capable of issuing
(much) more than A. Or, suppose that there exists a fraction of investors who, for regulatory
or tax reasons, prefer to hold A-assets – in that case, market A would not dry up completely
(although B could still become a little bit more liquid than A). Finally, even if concentrating
trade in the B-market was advantageous for the agents, it might still not happen because the
A-corner is always an equilibrium. As we have said before, if traders have formed a habit of
trading in the A-market in the past, it may take more than a theoretical benefit to get them to
make the collective switch to B.

C.2 Analysis of the model with Stackelberg duopoly

Suppose we let A move first and issue a quantity of assets, then let B best-respond. This is the
Stackelberg model of duopoly in contrast to the Cournot-Nash model analyzed in Section 4.3.
The incentives of issuer B are still identical to those characterized in Section 4.2.

We repeat two of the three experiments from the main text: CRS in the matching function (as
in Figure 7) and a small amount of IRS (ρ = 0.02, as in Figure 9). We maintain throughout that
δA ≥ δB, and look at comparative statics with respect to δB. They are shown in Figures C.5-C.6.
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Figure C.5: Comparative statics with respect to δB, of Stackelberg equilibria where A moves
first, with CRS (ρ = 0).
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Figure C.6: Comparative statics with respect to δB, of Stackelberg equilibria where A moves
first, with a small amount of IRS (ρ = 0.02).
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As before, lines are only shown in the graph where the result is determinate. For example, the
quantity B is omitted in regions where eC = 1, where B’s premium is zero and she is indifferent
to issuing any amount.

We can summarize the results as follows. When markets are identical (δA = δB), then A

will issue approximately twice as much as B (which is the standard Stackelberg solution to a
duopoly with linear demand). As δB decreases, A issues more and B issues less, but much less
aggressively so than in the Nash case (Figures 7-9 in the main text). Why? The reason is that
B now issues much less, so there is less incentive for A to ramp up their own issue and drive
B out. Issuer A gets most of the market anyway by virtue of being the first mover, so a small
amount of B-issue can be accommodated.

C.3 Analysis of the model where issuer B pays a cost to issue assets

Suppose that issuer B must pay a real marginal cost γB ≥ 0 in order to create bonds. Specifically,
this means that given B− issued bonds in the previous period, their Bellman equation is:

WB(B−) = max
X,H,B

{
X −H + βWB(B)

}
s.t. X + φB− + γBB = H + φpBB,

which we can simplify to yield:

WB(B−) = −φB− +max
B

{
φpBB − γBB + βWB(B)

}
.

Just as before, the issuer’s choice of B does not depend on their previous choices. We use this,
plus the fact that in steady state φ/φ̂ = (1 + µ), to solve for issuer B’s objective function:

JB =
φ

1 + i

(
ℓ αCBθ [u

′(q1B)− 1]− (1 + i)γB
)
B. (C.1)

Thus, the issuer’s objective is equivalent to maximizing the product of their asset supply and
the difference between the liquidity premium LB = ℓ αCBθ [u

′(q1B)− 1], and the effective marginal
cost, which we define to be cB ≡ (1 + i)γB for convenience:

max
B

(LB − cB) ·B.

For the sake of brevity, we restrict attention to the CRS case (ρ = 0) and the Nash equilib-
rium solution of the strategic game, and consider two market structures: balanced CRS where
δA = δB = 1, and unbalanced CRS where the A-market has an exogenous matching advantage:
δA = 1 but δB = 0.9. We then look at comparative statics with respect to the marginal issue
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Figure C.7: Comparative statics with respect to cB, with balanced CRS (ρ = 0, δA = δB = 1).
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Figure C.8: Comparative statics w.r.t. cB, with unbalanced CRS (ρ = 0, δA = 1, δB = 0.9).
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Figure C.9: Welfare as a function of cB, measured as equivalent CM consumption in percent
deviations from the first-best, and including the cost of issuing asset B.

cost cB. The results are shown in Figure C.7 (equilibrium outcomes for the balanced case), Fig-
ure C.8 (unbalanced case), and Figure C.9 (welfare in both cases).

The results for the balanced case are completely straightforward. No matter what B’s cost
of issuing is, as far as traders are concerned assets A and B still look like perfect substitutes.
Thus, liquidity premia, matching probabilities, and real quantities are identical. The only thing
that changes is that as B’s cost increases, they issue a smaller amount of assets which allows
issuer A to capture a larger share of the market.

As a consequence, social welfare is non-monotonic: as cB increases above zero, B’s issue
sizes do not decrease fast enough, so the welfare impact is governed by the increasing issue
costs. As issue costs become large enough, however, B is effectively driven out of the market
so at that point, welfare increases slightly again. However, with B out of the market, issuer A
acts as a monopolist, and we have already seen in the main text (Section 4.5) that for balanced
CRS and for intermediate OTC bargaining power (θ = 0.5), the Cournot duopoly outcome is
better for social welfare than the monopoly outcome.

The results for the unbalanced case are also as one would expect. Even if B’s cost of issuing
is zero, the matching disadvantage in the B-market results in a lower issue size and liquidity
premium for asset B. (The divergence in matching probabilities for C-types – asset sellers in
the OTC markets – shown in Panel [d] is yet another clear illustration of the amplification effect
discussed in the main text.) Consequently, the cost increase needed to drive B out of the market
altogether is not as high.
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D Analytical Solutions

D.1 Proof of Proposition 1 in the main text

Proof. (a) Assume eN = 0. We claim that eC = 0 is a best response by all C-types, i.e., S̃CA <

S̃CB when eN = 0. First, notice that when eC = 0, that is, when nobody is holding asset A,
q0A = q1A (≡ q̄) and S̃CA = −iq̄ + ℓ(u(q̄) − q̄). If the matching probability in OTCB was zero as
well, then q0B = q1B (= q̄) and S̃CB = S̃CA. So it remains to show that dS̃CB/dαCB > 0, keeping
in mind that q0B, q1B, and the price of asset B can change as well. However, since this is the
individual’s choice problem, they choose their portfolio (q0, q1) without considering how it can
affect aggregate variables.

We differentiate:

dS̃CB

dαCB

=
(
− i+ LB[(1− θ)u′(q0B) + θ] + ℓ[u′(q0B)− 1]− ℓαCBθ[u

′(q0B)− 1]
) dq0B
dαCB

. . .

+
(
− LB[(1− θ)u′(q1B) + θ] + ℓαCBθ[u

′(q1B)− 1]
) dq1B
dαCB

. . .

− dLB

dαCB

· [(1− θ)(u(q1B)− u(q0B)) + θ(q1B − q0B)] + ℓθ[u(q1B)− u(q0B)− q1B + q0B].

Now, if we substitute the right-hand side of the money demand equation for i, the coefficient
on dq0B vanishes. Similarly, if we substitute the definition of the liquidity premium for LB,
the coefficient on dq1B vanishes, because the individual agent was already choosing (q0, q1)

optimally. We are left with:

dS̃CB

dαCB

= − ℓ
θ

ω(q1B)
[u′(q1B)− 1][(1− θ)(u(q1B)− u(q0B)) + θ(q1B − q0B)] . . .

+ ℓθ[u(q1B)− u(q0B)− q1B + q0B]

= ℓ
θ

ω(q1B)

1

q1B − q0B

(
u(q1B)− u(q0B)

q1B − q0B
− u′(q1B)

)
.

And this term is positive since q1B > q0B and u is strictly concave, which proves that S̃CB > S̃CA,
and thus eC = 0 is a best response to eN = 0.

Then, with eC = 0, we have αNA = 0 while αNBSNB > 0 as long as asset B is in nonzero
supply. Therefore, G(0) < 0 and eN = eC = 0 is an equilibrium.

(b) The proof is identical with the proof of (a), except that eN = eC = 0 is replaced with eN =

eC = 1, and A and B are flipped.

(c) To find the limit as eN → 0, we (provisionally) guess that eC/eN is constant in the limit,

8



which implies that αCA and αNA are constant as well. It does not imply that αCB and αNB are
constant, since they depend on the ratio (1 − eC)/(1 − eN); however, since both eN and eC are
converging to zero, the ratio (1− eC)/(1− eN) converges to 1. Thus, near the limit, αCB and αNB

are approximately constant as well given our guess that eC/eN is constant in the limit.
Now, the question is what happens to the surpluses of C- and N-types that determine the

entry choices, which in turn depend on the equilibrium trade quantities (q0A, q1A, q0B, q1B). First,
look at the OTC bargaining solution (when C makes the offer): clearly, eC ↓ implies q1A ↑ and
q1B ↓ via the asset concentration/dilution effect. Also clearly, since eC gets arbitrarily small, we
must hit the point where q1A = q∗ for a positive value of eC . By our provisional result that the
matching probabilities are constant, the money demand equation forces q0A to stay constant,
too; but then, since q1A = q∗, the surplus S̃CA the C-type gets from specializing in asset A

(Equation 13 in the paper) is constant, as well.
What about S̃CB? When we totally differentiate the definition of S̃CB, under the maintained

assumption that α’s are constant, we get:

dS̃CB =

[
− i+ ℓ

(
1− αCB

θ

ω(q1B)

)
[u′(q0B)− 1] + ℓαCB

θ

ω(q1B)
[u′(q1B)− 1]

]
· dq0B . . .

+ ℓαCB
θ

ω(q1B)2
[(1− θ)(u(q1B)− u(q0B)) + θ(q1B − q0B)] [−u′′(q1B)] · dq1B.

The money demand equation implies that the term multiplying dq0B equals 0. Thus, S̃CB is an
increasing function of q1B. Earlier, we had shown that q1B is increasing in eC . Thus, eC → 0

implies that S̃CB decreases, and thus S̃CA > S̃CB near eC = 0, which falsifies the guess that
eC/eN is constant.

Since the guess that eC/eN is constant would imply S̃CA > S̃CB near eC = 0, the C-type’s
entry choice equation must instead imply that eC/eN is increasing when eN → 0. This, in turn,
implies αCA ↓, which restores the equation S̃CA = S̃CB. On the flipside, it also implies αNA ↓
(more entry of C-types into the A-market makes it easier for N-types to match there), while
q1B ↓ and q1A → q∗ is still the case. As a result, αNASNA > αNBSNB near eN → 0, which proves
the first part of the statement: limeN→0+G(eN) > 0 > G(0).

The second part of the statement – limeN→1−G(eN) < 0 < G(1) – again has an identical proof,
but with eN , eC → 0 replaced with eN , eC → 1, and A and B flipped.

The third part of the statement (a robust interior equilibrium exists) follows from continuity:
in between limeN→0+G(eN) and limeN→1−G(eN), there must be at least one eN which satisfies
G(eN) = 0, with G sloping down in a neighborhood of that point.

(d) The proof of part (c) above used CRS (ρ = 0) in that a constant ratio eC/eN implies that
αCA and αNA are constant as well. This is no longer the case for IRS (any ρ > 0). Instead,
now eN , eC → 0 implies αCA, αNA → 0. Thus, the G-function is continuous in neighborhoods
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of eN = 0 and eN = 1. (The discontinuities at the corners shown in part (c) arise because the
matching probabilities are discontinuous at eC = eN ∈ {0, 1}.) As a result, when ρ > 0, the
proofs of parts (a) and (b) apply to these neighborhoods rather than just to the corners.

Again, like in the proof of (c), the third part of the statement (an interior equilibrium exists)
follows from continuity: in between G(0) and G(1), there must be at least one eN which satisfies
G(eN) = 0. But robustness is not assured, since now G may cross 0 from below; see Figure 3 in
the main text for an illustration.

(e) We use the guess-and-verify method. Guess that eC = eN = A/(A + B) and q0A = q0B and
q1A = q1B; it is easy to confirm that this satisfies all of the equilibrium equations, and that it is
the unique solution when the sum A+B is small enough.

(f) All of Sections D.2-D.3 below.

D.2 Explicit differentiation around a scarce-assets interior equilibrium

Assume an interior equilibrium (eC ∈ (0, 1)) where asset supplies are small enough that both
assets are scarce in OTC trade and thus valued for liquidity in CM trade (q1A < q∗, q1B < q∗).

OTC outcome when C makes the offer (Equations 10-11)

q1A = min

{
q∗, q0A +

1

θ

A

M

eCq0A + (1− eC)q0B
eC

− 1− θ

θ
[u(q1A)− u(q0A)]

}
,

q1B = min

{
q∗, q0B +

1

θ

B

M

eCq0A + (1− eC)q0B
1− eC

− 1− θ

θ
[u(q1B)− u(q0B)]

}
.

Focus only on the scarce branch, and totally differentiate (holding M constant):

ω(q1A) · dq1A =

(
ω(q0A) +

A

M

)
· dq0A +

A

M

1− eC

eC

· dq0B − A

M

q0B
e2C

· deC . . . (D.1)

+
eCq0A + (1− eC)q0B

eC

· dA/M,

ω(q1B) · dq1B =

(
ω(q0B) +

B

M

)
· dq0B +

B

M

eC

1− eC

· dq0A +
B

M

q0A
(1− eC)2

· deC . . . (D.2)

+
eCq0A + (1− eC)q0B

1− eC

· dB/M.

Money demand (Equation 9)

i = ℓ

(
1− αCj

θ

ω(q1j)

)
[u′(q0j)− 1] + ℓ αCj

θ

ω(q1j)
[u′(q1j)− 1], for j = {A,B}.
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Totally differentiate:

di = ℓ

(
1− αCjθ

ω(q1j)

)
u′′(q0j) · dq0j + ℓαCjθ

ω(q0j)

ω(q1j)2
u′′(q1j) · dq1j . . . (D.3)

+ ℓ
θ

ω(q1B)
[u′(q1j)− u′(q0j)] · dαCj.

Note for interpretation that all three of the right-hand-side coefficients are negative, because
u′′ < 0, and q0 < q1 implies u′(q0) > u′(q1).

The liquidity premium (page 20)

Lj ≡ (1 + i)pj − 1 = ℓ αCj
θ

ω(q1j)
[u′(q1j)− 1] , for j = {A,B}.

Totally differentiate:

dLj = ℓαCj
θ

ω(q1j)2
u′′(q1j) · dq1j + ℓ

θ

ω(q1j)
[u′(q1j)− 1] · dαCj. (D.4)

C’s entry choice (Equations 12-13)

SCj = θ[u(q1j)− u(q0j)− q1j + q0j], for j = {A,B},

S̃Cj = −iq0j − Lj[(1− θ)(u(q1j)− u(q0j)) + θ(q1j − q0j)] + ℓ[u(q0j)− q0j] + ℓ αCjSCj.

Totally differentiate:

dS̃Cj = − q0j · di− [(1− θ)(u(q1j)− u(q0j)) + θ(q1j − q0j)] · dLj + ℓSCj · dαCj . . . (D.5)

+

(
− i+ Lj ω(q0j) + ℓ(u′(q0j)− 1)− ℓαCjθ [u

′(q0j)− 1]

)
· dq0j . . .

+

(
− Lj ω(q1j) + ℓαCjθ [u

′(q1j)− 1]

)
· dq1j.

After substituting money demand for i and the definition of the liquidity premium for Lj , the
terms on dq0j and dq1j vanish. This is because of an envelope argument: the C-type chooses their
asset holdings and their eventual market participation jointly. Thus, Equation (D.5) becomes:

dS̃Cj = − q0j · di− [(1− θ)(u(q1j)− u(q0j)) + θ(q1j − q0j)] · dLj + ℓSCj · dαCj.
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We now complete the linearization of the C-choice:

q0A · di+ [(1− θ)(u(q1A)− u(q0A)) + θ(q1A − q0A)] · dLA − ℓSCA · dαCA

= q0B · di+ [(1− θ)(u(q1B)− u(q0B)) + θ(q1B − q0B)] · dLB − ℓSCB · dαCB. (D.6)

N’s entry choice (Equations 15-16)

The differential analysis is much easier with an unscaled version of the G-function. Thus, for
the purposes of this appendix, we define:

G(eN) ≡ αNASNA − αNBSNB,

where SNj = (1− θ)[u(q1j)− u(q0j)− q1j + q0j], for j = {A,B}.

Totally differentiate:

SNA · dαNA + αNA · dSNA − SNB · dαNB + αNB · dSNB,

and dSNj = (1− θ)[u′(q1j)− 1] · dq1j − (1− θ)[u′(q0j)− 1] · dq0j.

Thus the N-choice differential equation is:

dG = SNA · dαNA + αNA(1− θ)[u′(q1A)− 1] · dq1A − αNA(1− θ)[u′(q0A)− 1] · dq0A . . . (D.7)

− SNB · dαNB − αNB(1− θ)[u′(q1B)− 1] · dq1B + αNB(1− θ)[u′(q0B)− 1] · dq0B.

Arrival probabilities (Equations 1-2)

Using the matching function from page 7 and the arrival probability definitions from Equa-
tions (1)-(2):

αCA = δA eN(1− ℓ) [eN(1− ℓ) + eCℓ]
ρ−1 ,

αCB = δB (1− eN)(1− ℓ) [(1− eN)(1− ℓ) + (1− eC)ℓ]
ρ−1 ,

αNA = δA eCℓ [eN(1− ℓ) + eCℓ]
ρ−1 ,

αNB = δB (1− eC)ℓ [(1− eN)(1− ℓ) + (1− eC)ℓ]
ρ−1 .
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Totally differentiate:

dαCA =
αCA

δA
· dδA − (1− ρ)ℓ(1− ℓ) δA eN [eN(1− ℓ) + eCℓ]

ρ−2 · deC . . .

+

[
αCA

eN

− (1− ρ)(1− ℓ)2 δA eN [eN(1− ℓ) + eCℓ]
ρ−2

]
· deN , (D.8)

dαCB =
αCB

δB
· dδB + (1− ρ)ℓ(1− ℓ) δA (1− eN) [(1− eN)(1− ℓ) + (1− eC)ℓ]

ρ−2 · deC . . .

−
[

αCB

1− eN

− (1− ρ)(1− ℓ)2 δB (1− eN) [(1− eN)(1− ℓ) + (1− eC)ℓ]
ρ−2

]
· deN , (D.9)

dαNA =
αNA

δA
· dδA +

[
αNA

eC

− (1− ρ)ℓ2 δA eC [eN(1− ℓ) + eCℓ]
ρ−2

]
· deC . . .

− (1− ρ)ℓ(1− ℓ) δA eC [eN(1− ℓ) + eCℓ]
ρ−2 · deN , (D.10)

dαNB =
αNB

δB
· dδB −

[
αNB

1− eC

− (1− ρ)ℓ2 δB (1− eC) [(1− eN)(1− ℓ) + (1− eC)ℓ]
ρ−2

]
· deC . . .

+ (1− ρ)ℓ(1− ℓ) δB (1− eC) [(1− eN)(1− ℓ) + (1− eC)ℓ]
ρ−2 · deN . (D.11)

D.3 Special case: symmetric equilibrium

If δA = δB = δ and A = B, then a symmetric equilibrium exists where eC = eN = 0.5, thus
αCA = αCB = δ(1 − ℓ)2−ρ and αNA = αNB = δℓ 2−ρ, thus q0A = q0B (≡ q0) and q1A = q1B (≡ q1).
Around this symmetric equilibrium, the differential equations take the following forms:

Arrival probabilities (Equations D.8-D.11)

dαCA = (1− ℓ)2−ρ · dδA − (1− ρ)(1− ℓ)ℓ δ 21−ρ · deC + (ρ+ ℓ− ρℓ)(1− ℓ)δ 21−ρ · deN , (D.12)

dαCB = (1− ℓ)2−ρ · dδB + (1− ρ)(1− ℓ)ℓ δ 21−ρ · deC − (ρ+ ℓ− ρℓ)(1− ℓ)δ 21−ρ · deN ,

dαNA = ℓ 2−ρ · dδA + (1− ℓ+ ρℓ)ℓ δ 21−ρ · deC − (1− ρ)(1− ℓ)ℓδ 21−ρ · deN , (D.13)

dαNB = ℓ 2−ρ · dδB − (1− ℓ+ ρℓ)ℓ δ 21−ρ · deC + (1− ρ)(1− ℓ)ℓδ 21−ρ · deN .

If, in particular, the δ’s are constant, then the differential terms are anti-symmetric:

dαCA = −dαCB and dαNA = −dαNB. (D.14)
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If, beyond this, ρ = 0 (CRS matching), then the differential terms are cross-anti-symmetric:

dαCA = −dαNA = −dαCB = dαNB

= −2ℓ(1− ℓ)δ · deC + 2ℓ(1− ℓ)δ · deN .

But with constant δ’s and ρ = 1 (congestion-free matching), we get a different simplification:

dαCA = −dαCB = (1− ℓ)δ · deN and dαNA = −dαNB = ℓ δ · deC.

Post-trade quantities (Equations D.1-D.2)

ω(q1) · dq1A =

(
ω(q0) +

A

M

)
· dq0A +

A

M
· dq0B − A

M
4q0 · deC + 2q0 · dA/M,

ω(q1) · dq1B =

(
ω(q0) +

A

M

)
· dq0B +

A

M
· dq0A +

A

M
4q0 · deC + 2q0 · dB/M.

If, in particular, the asset supplies are constant, then adding up gives:

ω(q1) · (dq1A + dq1B) =

(
ω(q0) +

2A

M

)
· (dq0A + dq0A). (D.15)

D.3.1 The symmetric equilibrium has an anti-symmetric derivative

Consider next the money demand equation (D.3). Its coefficients are the same at the symmetric
equilibrium, so we can add up for j = {A,B}:

2di = ℓ

(
1− θ

ω(q1)
δ(1− ℓ)2−ρ

)
u′′(q0) · (dq0A + dq0B) . . .

+ ℓθ
ω(q0)

ω(q1)2
δ(1− ℓ)2−ρ u′′(q1) · (dq1A + dq1B) + ℓ

θ

ω(q1)
[u′(q1)− u′(q0)] · (dαCA + dαCB).

Using (D.14), the last term vanishes. And if, in particular, i is constant, we obtain:

0 =

(
1− θ

ω(q1)
δ(1− ℓ)2−ρ

)
u′′(q0) · (dq0A + dq0B) + θ

ω(q0)

ω(q1)2
δ(1− ℓ)2−ρ u′′(q1) · (dq1A + dq1B)

⇐⇒ dq1A + dq1B = −
1− θ

ω(q1)
δ(1− ℓ)2−ρ

θ ω(q0)
ω(q1)2

δ(1− ℓ)2−ρ

u′′(q0)

u′′(q1)
· (dq0A + dq0B). (D.16)

Combining (D.16) with (D.15), we have shown full anti-symmetry of the differential system:

dq0A = −dq0B and dq1A = −dq1B. (D.17)
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As a consequence, we can split the system into two “halves” and solve for them separately.

Formulation of the “halved” differential system

We maintain the assumptions that the δ’s, asset supplies, and i are constant, and we are left
with a linear differential system in seven variables: (dq0A, d1A, dαCA, dαNA, deC, deN , dG). This
system satisfies six equations, which is enough solve for our ultimate object of interest: the
derivative of the G-function, dG/deN . The first equation is OTC trade (equation above D.15)
with anti-symmetry (D.17) used to substitute dq0B:

0 = ω(q1) · dq1A − ω(q0) · dq0A +
A

M
4q0 · deC

= ω(q1) · dq1A − ω(q0) · dq0A + 2
[
(1− θ)(u(q1)− u(q0)) + θ(q1 − q0)

]
· deC. (D.18)

where we used the OTC solution (equation above D.1) evaluated at the symmetric equilibrium
to substitute out the asset supply A/M .

Then, money demand (D.3) on the A-branch, multiplied by (−1) to make all coefficients
positive and dividing out the extra ℓ:

0 =

(
1− θ

ω(q1)
δ(1− ℓ)2−ρ

)
[−u′′(q0)] · dq0A + θ

ω(q0)

ω(q1)2
δ(1− ℓ)2−ρ [−u′′(q1)] · dq1A . . .

+
θ

ω(q1)
[u′(q0)− u′(q1)] · dαCA. (D.19)

Then, the C-entry choice (D.6). Using the anti-symmetry results we have dS̃CA = −dS̃CB and
dLA = −dLB, which yields:

0 =
[
(1− θ)(u(q1)− u(q0)) + θ(q1 − q0)

]
· dLA − ℓSCA · dαCA.

Substitute the liquidity premium differential with (D.4) and divide out the extra ℓθ:

0 =
[
(1− θ)(u(q1)− u(q0)) + θ(q1 − q0)

]
δ(1− ℓ)2−ρ 1

ω(q1)2
u′′(q1) · dq1A . . .

+
[
(1− θ)(u(q1)− u(q0)) + θ(q1 − q0)

] 1

ω(q1)
[u′(q1)− 1] · dαCA − SCA

θ
· dαCA.
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Collect terms on dαCA, then multiply by (−ω(q1)):

0 =
[
(1− θ)(u(q1)− u(q0)) + θ(q1 − q0)

]
δ(1− ℓ)2−ρ 1

ω(q1)
[−u′′(q1)] · dq1A . . .

+ (q1 − q0)

[
u(q1)− u(q0)

q1 − q0
− u′(q1)

]
· dαCA. (D.20)

Since u is concave, and q0 < q1, both coefficients are now positive.
The fourth equation is the N-entry choice (D.7). Thanks to anti-symmetry, we have:

dG = 2SN · dαNA + 2αNA(1− θ)[u′(q1)− 1] · dq1A − 2αNA(1− θ)[u′(q0)− 1] · dq0A

= 2SN · dαNA + δℓ 21−ρ (1− θ)[u′(q1)− 1] · dq1A − δℓ 21−ρ (1− θ)[u′(q0)− 1] · dq0A. (D.21)

where SN ≡ (1− θ)[u(q1)− u(q0)− q1 + q0].

Auxiliary terms

To simplify the presentation, define the auxiliary terms:

Ψ ≡ ω(q1)− θδ(1− ℓ)2−ρ

θδ(1− ℓ)2−ρ
, Ω0 ≡

u′(q0)− u(q1)−u(q0)
q1−q0

−u′′(q0)
, and Ω1 ≡

u(q1)−u(q0)
q1−q0

− u′(q1)

−u′′(q1)
.

Lemma D.1. They satisfy the following properties:

(a)
ω(q1)

ω(q0)
Ψ > 1 if θδ(1− ℓ) < 2ρ−1 and i is sufficiently low.

(b) Ω0 =
1

2
(q1 − q0) + o

(
(q1 − q0)

2
)
.

(c) Ω1 =
1

2
(q1 − q0) + o

(
(q1 − q0)

2
)
.

(d) Ω0,Ω1 > 0 for all q1 > q0.

(e) Ω0 ≤ Ω1 for all q1 > q0 if u′′′ ≥ 0.

Proof. (a) First notice that Ψ ≥ 1−θδ(1−ℓ)2−ρ

θδ(1−ℓ)2−ρ and the fraction on the right-hand side is greater
than 1 if θδ(1 − ℓ) < 2ρ−1. Since ω(q1)

ω(q0)
≤ 1 and ω(q1)

ω(q0)
↗ 1 as i → 0, there exist a sufficiently low i

for which ω(q1)
ω(q0)

Ψ > 1. (b) and (c) follow from applying L’Hospital’s rule. (d) follows from strict
concavity of u. (e) Expand all fractions and rewrite the inequality (keeping in mind that u′′ < 0
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by the assumption of strict concavity):

[−u′′(q1)− u′′(q0)] [u(q1)− u(q0)]− [−u′′(q0)]u
′(q1)(q1 − q0)− [−u′′(q1)]u

′(q0)(q1 − q0) ≥ 0.

Define the left-hand side of the inequality to be ∆. Clearly, ∆
∣∣
q0=q1

= 0; now, let q1 increase.
After some tedious algebra, we find that the derivative is:

d∆

dq1
= u′′′(q1)

[
u′(q0)(q1 − q0)− u(q1) + u(q0)

]
+ [−u′′(q1)]

[
u′(q1)− u′(q0)− u′′(q0)(q1 − q0)

]
.

The first term in square brackets is positive since u is strictly concave; the last term in square
brackets is non-negative whenever u′ is convex. This is the case whenever u′′′ ≥ 0; thus, u′′′ ≥ 0

implies d∆/dq1 ≥ 0 for all q1 > q0. Since ∆ starts at zero when q1 = q0 and can never decrease
when q1 increases, this proves claim (e).

D.3.2 Explicit solution of the “halved” differential system

Start with Equation (D.20). Use it to solve for dαCA:

dαCA =
(1− θ)(u(q1)− u(q0)) + θ(q1 − q0)

ω(q1)(q1 − q0)
· δ(1− ℓ)2−ρ · u′′(q1)

u(q1)−u(q0)
q1−q0

− u′(q1)
· dq1A

= −(1− θ)(u(q1)− u(q0)) + θ(q1 − q0)

ω(q1)(q1 − q0)
· δ(1− ℓ)2−ρ

Ω1

· dq1A. (D.22)

Substitute this result into Equation (D.19), and rearrange to solve for dq1A:

dq1A =
ω(q1)− θδ(1− ℓ)2−ρ

θδ(1− ℓ)2−ρ
· u

′′(q0)

u′′(q1)
·

u(q1)−u(q0)
q1−q0

− u′(q1)

u′(q0)− u(q1)−u(q0)
q1−q0

· dq0A = Ψ
Ω1

Ω0

· dq0A. (D.23)

Substitute (D.23) back into (D.22) to obtain:

dαCA = −(1− θ)(u(q1)− u(q0)) + θ(q1 − q0)

ω(q1)(q1 − q0)

ω(q1)− θδ(1− ℓ)2−ρ

θΩ0

· dq0A.

Now we can substitute (D.12) to eliminate dαCA:

θδ (1− ℓ) 21−ρ
[
(ℓ− ρℓ) · deC − (ρ+ ℓ− ρℓ) · deN

]
=

(1− θ)(u(q1)− u(q0)) + θ(q1 − q0)

ω(q1)(q1 − q0)

ω(q1)− θδ(1− ℓ)2−ρ

Ω0

· dq0A.

17



After some algebra and rearranging, we obtain:

dq0A =
ω(q1)(q1 − q0)

(1− θ)(u(q1)− u(q0)) + θ(q1 − q0)

Ω0

ω(q1)− θδ(1− ℓ)2−ρ
θδ (1− ℓ) 21−ρ . . .

×
[
(ℓ− ρℓ) · deC − (ρ+ ℓ− ρℓ) · deN

]
=

ω(q1)(q1 − q0)

(1− θ)(u(q1)− u(q0)) + θ(q1 − q0)

2Ω0

Ψ

[
(ℓ− ρℓ) · deC − (ρ+ ℓ− ρℓ) · deN

]
. (D.24)

Next, combine (D.23) with (D.18) to eliminate dq1A:

ω(q0) · dq0A = ω(q1) ·Ψ
Ω1

Ω0

· dq0A + 2
[
(1− θ)(u(q1)− u(q0)) + θ(q1 − q0)

]
· deC.

Solve for dq0A:

dq0A = − Ω0

ΨΩ1 ω(q1)− Ω0 ω(q0)
× 2

[
(1− θ)(u(q1)− u(q0)) + θ(q1 − q0)

]
· deC. (D.25)

Then substitute (D.25) into (D.24) to eliminate dq0A:

Ψ
[
(1− θ)(u(q1)− u(q0)) + θ(q1 − q0)

]2
· deC

= ω(q1)(q1 − q0)
[
ΨΩ1 ω(q1)− Ω0 ω(q0)

][
− (ℓ− ρℓ) · deC + (ρ+ ℓ− ρℓ) · deN

]
.

After some more algebra, we obtain the effect of an (exogenous) change in market entry of
N-types on the (endogenous) market choice of C-types:

deC

deN

=
(ρ+ ℓ− ρℓ)ω(q1)(q1 − q0)

[
ΨΩ1 ω(q1)− Ω0 ω(q0)

]
Ξ

(D.26)

where Ξ denotes:

Ξ ≡ (ℓ− ρℓ)ω(q1)(q1 − q0)
[
ΨΩ1 ω(q1)− Ω0 ω(q0)

]
+Ψ

[
(1− θ)(u(q1)− u(q0)) + θ(q1 − q0)

]2
.

In principle, this term could be negative, or even blow up if Ψ is small enough (i.e., θδ(1− ℓ)2−ρ

and q1 are big enough). But following the results in Lemma D.1, we assume that θδ(1− ℓ) <

2ρ−1, i is sufficiently low, and u′′′ ≥ 0 (marginal utility u′ is convex), so that it is positive and
finite. If in addition we have CRS in the matching function (ρ = 0), then the term is strictly
in (0, 1). (But keep in mind that the term is evaluated at the symmetric equilibrium, i.e., at the
entry mid-point of eC = eN = 1/2. The slope is not necessarily ∈ (0, 1) for eN near the corners.)
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Now we substitute this back into (D.25) and (D.23), obtaining:

dq0A
deN

= −
2(ρ+ ℓ− ρℓ)ω(q1)(q1 − q0) Ω0

[
(1− θ)(u(q1)− u(q0)) + θ(q1 − q0)

]
Ξ

,

dq1A
deN

= −
2(ρ+ ℓ− ρℓ)ω(q1)(q1 − q0)ΨΩ1

[
(1− θ)(u(q1)− u(q0)) + θ(q1 − q0)

]
Ξ

.

Finally, we substitute these, together with (D.13) and (D.26), into (D.21) and collect terms:

dG = 2SN

[
(1− ℓ+ ρℓ)ℓδ21−ρ · deC − (1− ρ)(1− ℓ)ℓδ21−ρ · deN

]
. . .

+ δℓ21−ρ (1− θ)
[
[u′(q1)− 1] · dq1A − [u′(q0)− 1] · dq0A

]

= δℓ22−ρ SN
1

Ξ

ρω(q1)(q1 − q0)
[
ΨΩ1 ω(q1)− Ω0 ω(q0)

]
− (1− ρ)(1− ℓ)Ψ

[
(1− θ)(u(q1)− u(q0)) + θ(q1 − q0)

]2
 · deN . . .

− δℓ22−ρ 1

Ξ

(1− θ)(ρ+ ℓ− ρℓ)ω(q1)(q1 − q0) . . .

×
[
(1− θ)(u(q1)− u(q0)) + θ(q1 − q0)

][
[u′(q1)− 1]ΨΩ1 − [u′(q0)− 1]Ω0

]
 · deN .

The last term is negative, maintaining the assumptions of Lemma D.1. This term reflects the
intensive margin, the marginal surplus of trading in the A-market; as one would expect, more
people entering this market drives down the marginal surplus due to the asset dilution effect.
The preceding term, on the other hand, could be positive or negative; it reflects the balance of
the congestion effect and the thick market effect. When ρ = 0 (constant returns to scale), there
is no thick market effect, and the slope of the N-entry choice function is negative:

dG

deN

∣∣∣∣
CRS

=
4δℓ

[
(1− θ)(u(q1)− u(q0)) + θ(q1 − q0)

]
ℓ ω(q1)(q1 − q0)

[
ΨΩ1 ω(q1)− Ω0 ω(q0)

]
+Ψ

[
(1− θ)(u(q1)− u(q0)) + θ(q1 − q0)

]2 . . .

×

− (1− ℓ)Ψ
[
(1− θ)(u(q1)− u(q0)) + θ(q1 − q0)

]
SN

− (1− θ)ℓ ω(q1)(q1 − q0)
[
[u′(q1)− 1]ΨΩ1 − [u′(q0)− 1]Ω0

]


When ρ = 1 (congestion-free matching), on the other hand, there is a thick market effect but
no congestion effect. In this case, the slope of the N-entry choice function could be positive or
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negative, depending on which remaining effect dominates:

dG

deN

∣∣∣∣
ρ=1

=
2δℓ

Ψ
[
(1− θ)(u(q1)− u(q0)) + θ(q1 − q0)

] . . .

×


ω(q1)(q1 − q0)

[
ΨΩ1 ω(q1)− Ω0 ω(q0)

] SN[
(1− θ)(u(q1)− u(q0)) + θ(q1 − q0)

]
− (1− θ)ω(q1)(q1 − q0)

[
[u′(q1)− 1]ΨΩ1 − [u′(q0)− 1]Ω0

]


In general, this could go either way; however, as we can see, the strength of the thick market
effect is governed by average surplus (average over all assets traded) available in each market,
while the strength of the asset dilution effect is governed by marginal surplus (of the marginal
asset traded). Thus, the latter effect is most likely to dominate when asset supplies are small.
When asset supplies are nearly-plentiful, on the other hand, so that q1 ≈ q∗ and u′(q1) ≈ 1, the
thick market effect becomes dominant, and the entry-choice function is upward sloping.

20


	Strategic Variants
	Analysis of the model with one non-strategic issuer
	Analysis of the model with Stackelberg duopoly
	Analysis of the model where issuer B pays a cost to issue assets

	Analytical Solutions
	Proof of Proposition 1 in the main text
	Explicit differentiation around a scarce-assets interior equilibrium
	Special case: symmetric equilibrium
	The symmetric equilibrium has an anti-symmetric derivative
	Explicit solution of the ``halved'' differential system



